
6. SDP Toolkit Specification

6.1 Introduction
In this section, we give a descriptive list of Toolkit software tools designed to satisfy the
requirements listed in PGS Toolkit Requirements Specification for the ECS Project, Hughes
Information Technology Systems, Inc. 193-801-SD4-001, October 1993 and updated in version
through November 1997. The following fields are provided: a name, a synopsis field, a
description of each tool, a list of input and output, an error return field, examples, notes, and a
cross reference to the target Toolkit requirement(s).

It is assumed that ECS science software requests for system services, for system and resource
accesses, file I/O requests, error message transaction, metadata formatting, accesses to spacecraft
orbit and attitude, and time and date requests must be made through the Toolkit, as explained in
section 4.1. This usage will be tested at integration time at the DAACs. These tools are described
in Section 6.2. Other services, such as geographic information data base requests, geolocation
tools, scientific and math library calls, requests for physical constants and unit conversions, will
be provided; their usage will be encouraged, but not enforced. They are the subject of
Section 6.3.

Toolkit routines use the following naming convention:

PGS_GROUPNAME_FUNCTIONALNAME. The GROUPNAME denotes the function of that
group of Toolkit routines: IO=Input/Output, SMF=Status/message Facility, MEM=Memory
Management, MET=metadata, EPH=Ephemeris/Attitude data access, TD=time and date
conversion, PC=ProcessControl, DEM=Digital Elevation Model access, AA=Ancillary Data
Access, CBP=Celestial Body Position, GCT=Geo-coordinate Transformation, CUC=Constant
and Unit Conversion, CSC=Coordinate System Conversion. The remaining part of the name has
sufficient detail to indicate the functionality of the tool. (See also Section 3.2)

There are several C (.h) and FORTRAN (.f) include files listed in the tool descriptions in the
following sections, e.g., PGS_IO.h. These files are meant to contain descriptions of data
structures, constants; headers; configuration information for data files called by the tools;
common symbols; return codes, etc., used in that section. To view these files, look in Toolkit
directory $PGSHOME/include.

A note on error handling: Since each function has only one return value; every effort has been
made to preserve the most important warning or error value on returning. Given that subordinate
functions often have several possible returns, and different users have different priorities, it is
always advisable to check the message log in $PGSRUN as well as examining the return. When
totally inconsistent behavior is found in a return from a subordinate function, the returned value
is PGS_E_TOOLKIT. Example: a Toolkit function passes an internally generated vector, whose
length is certain to be nonzero, to a subordinate function. The lower-level function then returns a
warning or error return saying that the vector is of zero length; while the higher level function

 6-1 333-EMD-001, Rev. 05

returns PGS_E_TOOLKIT. Another example: if a valid spacecraft tag is passed in, but rejected
as invalid down the processing line, the error PGS_E_TOOLKIT is returned by the higher-level
function. Thus return value PGS_E_TOOLKIT indicates a flaw in the software, the violation of
an array boundary, a hardware, compiler, or system error, corrupted data, or some similarly
serious condition that invalidates the processing.

6.2 SDP Toolkit Tools-Mandatory

6.2.1 File I/O Tools

This section describes the set of tools used to perform file I/O, including Level 0 access generic
and temporary I/O tools, also proposed metadata tools. An explanation of usage of the Toolkit as
regards Hierarchical Data Format (HDF) is also included.

6.2.1.1 Level 0 Science Data Access Tools

6.2.1.1.1 Introduction

These Level 0 access tools are used to open and read data from Level 0 data files. These files are
generated and formatted by EDOS for AM, PM and AURA platform data, and by the science
data processing facility (SDPF) for TRMM platform data.

The Level 0 access tool design has simple user interfaces, and allows science software to do
much of the data unpacking in whatever manner is desired. Essentially all header and packet data
are returned in character buffers. The packet data is returned a single packet at a time, so the
science software can decide whether to store it or to immediately process it.

A complete specification of the Level 0 file formats used in construction of this software is
found in Appendix F.

6.2.1.1.2 Design Overview

The design focuses on the idea of a “virtual" data set, consisting of all staged physical L0 files
for a particular data type. By data type is meant data that are related in some way; most often this
means data with a common application process identifier (APID). There may be many virtual
data sets for a given production run. For example, main Clouds and Earth Radiant Energy
System (CERES) L0 processing involves science data (APID 54) and housekeeping data (all
other APIDs). Each of these two sets of data corresponds to a single virtual data set in the
Level 0 tool design. Each virtual data set corresponds to a single logical file ID in the science
software and (at the SCF) in the Process Control File (PCF).

For a given run, if a given set of data for a single set of data (science or housekeeping) needs to
be broken into more than one file, then each physical file corresponds to a different version of
the same logical file ID in the PCF. (This is never expected to be the case for TRMM, but may
be for EOS AM or PM or AURA.)

 6-2 333-EMD-001, Rev. 05

Next is given a brief summary of the functions of the L0 tools. The tools are divided into two
groups: one group consisting of required tools for reading L0 data in production software, and
one group for use only at the SCF for generation of test data sets.

6.2.1.1.3 Tools for Reading Production L0 Data

PGS_IO_L0_Open sets up internal tables that allow the SDP Toolkit to provide the science
software with time-ordered access to file attributes. It opens the first physical file and positions
the file pointer at the earliest packet in the staged data. It returns the virtual file handle used by
other L0 access tools.

PGS_IO_L0_SetStart is for optionally positioning the virtual file pointer at a start time that is
different from the earliest packet in the staged data.

PGS_IO_L0_SetStartCntPkts is for optionally positioning the virtual file pointer at a start time
that is different from the earliest packet in the staged data. Also tracks the number of packets
skipped in the current file

PGS_IO_L0_GetHeader is for retrieving data from the physical L0 file header; in addition, for
TRMM processing, it retrieves data from the file footer, which consists of quality and missing
packet information. Data is returned in a simple character buffer.

PGS_IO_L0_GetPacket retrieves a single packet’s worth of data. Data is also returned in a
simple character buffer by this function.

PGS_IO_L0_Close is for closing a L0 virtual data set.

6.2.1.1.4 Tools for Generating Simple Simulated L0 Data Sets

The above tools satisfy SDP Toolkit requirements for tools that read Level 0 data files; along
with these, a means is provided to generate simple simulated Level 0 files. A major portion of
TRMM Level 0 processing may be simulated using these files; for EOS AM, PM and AURA
platforms, packet and Construction Record File simulation included in the simulator. Provided
for simulated file generation are:

L0sim, an executable interactive utility that queries the user about parameters used in creation of
a simulated Level 0 data set. It can create file(s) for a single APID, or a housekeeping file with
many APIDs; one or many physical files per APID; and many other things. See Appendix E for
an example of its use.

PGS_IO_L0_File_Sim, a function callable from C or FORTRAN; it is the underlying function
used by L0sim. Users who prefer to customize file simulations to fit their own needs may use this
function.

6.2.1.1.5 Use of L0 Read Tools In Science Software Processing

Next is presented a brief summary of how science software might use the L0 read tools to do
Level 0 processing. A full example of L0 processing using CERES as an example is given in
Appendix E. Examples are also provided in individual tool descriptions below.

 6-3 333-EMD-001, Rev. 05

In the production system, once the required L0 data and other data are staged, the PGE kicks off
automatically. During development at the SCF, the developer must first generate file(s) using the
simulator tools, then prepare entries in the Process Control File (PCF).

The science code might proceed as follows:

a. Call PGS_IO_L0_Open; with the logical file ID as input parameter used in the PCF. Get
back a virtual file handle for use in other tools.

b. Optionally call PGS_PC_GetFileAttr or PGS_PC_GetFileByAttr to read an “attribute”
file associated with the L0 data file. For example, for TRMM this might be the detached
standard formatted data unit (SFDU) header file.

c. Optionally call PGS_PC_SetStart if a starting time other than the earliest in the data set is
desired.

d. Allocate memory for as much data as is desired to save, based on the start and stop times
returned from PGS_IO_L0_Open. (In FORTRAN 77 this will have to be hardcoded to
some maximum.)

e. While there is still data left, first call PGS_IO_L0_GetHeader to read the physical file
header, and also the footer (TRMM quality and accounting capsule (QAC) and missing
data unit list (MDUL) data).

f. Call PGS_IO_L0_GetPacket to read a single packet. Repeat until end of data reached,
storing the data as desired.

g. If PGS_IO_L0_GetPacket returns a value indicating a new physical file has been opened,
loop back to call PGS_IO_L0_GetHeader again to read the new file header.

h. Call PGS_IO_L0_Close to close this virtual data set.

i. If there are more virtual data sets (e.g., APIDs) to process, loop back to call
PGS_IO_Gen_Open again.

Note that this algorithm is just one example of how this might be done. Another way is to open
several virtual data sets at once.

Please note also that science software is responsible for unpacking headers, packets and footers
as it sees fit. Specification of their formats as used in this version of the software appears in
Appendix F.

6.2.1.1.6 Special Note on Processing TRMM and ADEOS-II Files

In order to process the Level 0 data files the Level 0 access tools must be able to convert the time
found in the data files to TAI. Special preparation is required to do this in the case of TRMM and
ADEOS-II.

To properly convert times to or from TRMM s/c clock time the value of the TRMM Universal
Time Correlation Factor (UTCF) must be known. This value must be supplied by the user in the

 6-4 333-EMD-001, Rev. 05

Process Control File (PCF). The following line MUST be contained in the PCF for any process
that is converting to or from TRMM s/c clock time:

10123|TRMM UTCF value|<UTCF VALUE>

Where the proper value of the UTCF should be substituted for <UTCF VALUE>.

To properly convert times to or from ADEOS-II s/c clock time the ADEOS-II Time Differential
(TMDF) values must be known. These values must be supplied by the user in the Process
Control File (PCF). The following lines MUST be contained in the PCF for any process that is
converting to or from ADEOS-II s/c clock time:

<UTC VALUE>

10120|ADEOS-II s/c reference time|<S/C REFERENCE TIME>
10121|ADEOS-II ground reference time|<GROUND REFERENCE TIME>
10122|ADEOS-II s/c clock period|<S/C PERIOD>

Where:

the proper value of the S/C clock reference time should be substituted for
< S/C REFERENCE TIME>.

the proper value of the ground reference time should be substituted for
<GROUND REFERENCE TIME> (this time should be in TAI format-see sec. 6.2.7 Time and
Date Conversion Tools).

the proper value of the S/C clock period should be substituted for <S/C PERIOD>.

 6-5 333-EMD-001, Rev. 05

Open a Virtual Data Set

NAME: PGS_IO_L0_Open

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_Open(
 PGSt_PC_Logical file_logical,
 PGSt_tag spacecraft_tag,
 PGSt_IO_L0_VirtualDataSet *virtual_file,
 PGSt_double *start_time,
 PGSt_double *stop_time)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function
PGS_IO_L0_Open(
+ file_logical,
+ spacecraft_tag,
+ virtual_file,
+ start_time,
+ stop_time)

 integer file_logical
 integer spacecraft_tag
 integer virtual_file
 double precision start_time
 double precision stop_time

DESCRIPTION This tool opens the virtual data set pointed to by file_logical. A virtual
Level 0 data set is defined by the set of physical data files that have been
staged for this Level 0 process.

 The tool returns a descriptor that is used by all the Level 0 tools to access
the specified virtual data set. The tool also returns the start and stop times
of this virtual data set.

 6-6 333-EMD-001, Rev. 05

INPUTS: file_logical-The logical file descriptor for this virtual data set, as given in
 the Process Control File

 spacecraft_tag-The tag identifying which of the supported spacecraft
 platforms generated this virtual data set. Must be either
 PGSd_EOS_AM, PGSd_EOS_AURA, PGSd_EOS_PM_GIIS,
 PGSd_EOS_PM_GIRD, PGSd_TRMM, or PGSd_ADEOS_II.

OUTPUTS: virtual_file-The file descriptor used by all other Level 0 access tools to
 refer to the virtual data set

 start_time-The start time of this virtual data set

 stop_time-The stop time of this virtual data set

Time format is TAI: continuous seconds since 12AM UTC Jan. 1, 1993

RETURNS:
Table 6-1. PGS_IO_L0_Open Returns

Return Description
PGS_S_SUCCESS Successful completion
PGSIO_W_L0_CORRUPT_FILE_HDR Corrupted file header
PGSIO_E_L0_BAD_SPACECRAFT_TAG Invalid spacecraft tag
PGSIO_E_L0_INIT_FILE_TABLE Error during read of physical file header for initialization
PGSIO_E_L0_INVALID_FILE_LOGICAL Failed to process this file logical in process control file
PGSIO_E_L0_MAP_VERSIONS Failed to initialize internal physical file table
PGSIO_E_L0_PHYSICAL_OPEN Unable to open physical file
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_L0_SEEK_1ST_PACKET Can’t find 1st packet in dataset

EXAMPLES: Prepare in part for Lightening Imaging Sensor (LIS) Level 0 processing by
opening the LIS/TRMM Level 0 virtual data set for science APID 61.

 For TRMM, there is expected to be only one physical file per APID per
day. In this case each virtual data set (APID) corresponds to exactly one
physical file.

 At the SCF, you must prepare entries of the following form in the Process
Control File:

 ? PRODUCT INPUT FILES
[set env var PGS_PRODUCT_INPUT for default location]

61|TRMM_G0091_1997-11-
 01T00:00:00Z_dataset_V01_01||||TRMM_G0091_1997-11-
 01T00:00:00Z_sfdu_V01_01|1

 6-7 333-EMD-001, Rev. 05

(Here the logical ID used is arbitrarily set to the APID.)

Note: In the above Process Control File entry, the file name in the next-to-last field is the TRMM
SFDU header file, which is a file that contains data associated with the
given L0 file. Use functions PGS_IO_PC_GetFileAttr or
PGS_IO_PC_GetFileByAttr to retrieve data from this file. Also, the PCF
entry must appear on a single line, and not be broken into several lines as
shown here.

C: #define SCIENCE_FILE 61

 PGSt_IO_L0_VirtualDataSet virtual_file;
PGSt_PC_Logical file_logical;
PGSt_tag spacecraft_tag;
PGSt_double start_time;
PGSt_double stop_time;
PGSt_SMF_status returnStatus;

 file_logical = SCIENCE_FILE;
spacecraft_tag = PGSd_TRMM;

 returnStatus = PGS_IO_L0_Open(
 file_logical,
 spacecraft_tag,
 &virtual_file,
 &start_time,
 &stop_time);

 /# Virtual file handle virtual_file may now be used as
input to other L0 access tools #/

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’
integer SCIENCE_FILE

 parameter (SCIENCE_FILE=61)
integer pgs_io_l0_open
integer file_logical
integer spacecraft_tag
integer virtual_file
double precision start_time

 6-8 333-EMD-001, Rev. 05

double precision stop_time
integer returnstatus

 file_logical = SCIENCE_FILE
spacecraft_tag = PGSd_TRMM

 returnstatus = pgs_io_l0_open(
 file_logical,
 spacecraft_tag,
 virtual_file,
 start_time,
 stop_time)

C Virtual file handle virtual_file may now be used as input to

C other L0 access tools

NOTES: A virtual data set is defined by a set of one or more related Level 0
physical files. For example, it might consist of all physical files
corresponding to a single TRMM science application ID (APID) for a
single production run. In the case of EDOS formatted Level 0 data files, a
virtual data set consists of all physical files comprising an EDOS
PDS/EDS. Only one PDS/EDS is allowed per virtual file.

 The maximum number of virtual data sets that may be open at any one
time is 20.

 This function must be called first; before any other Toolkit Level 0 access
tools are called.

 A virtual data set may consist of several physical files. In this case the
files are listed in the process control file with the same logical ID (1st
field) but different instance number (last field).

 The physical file version corresponding to the first time-ordered set of
packets for the virtual data set is opened by this tool. The file pointer is
left positioned so that the next call to PGS_IO_L0_GetPacket will read the
first packet in the file.

 To get file header and footer (TRMM only) information for the newly
opened physical file, use tool PGS_IO_L0_GetHeader. A rudimentary
check is done on the header of the first physical file of the virtual data set.
If an error is found in the header this function will return the value
PGSIO_W_L0_CORRUPT_HEADER. The file will be opened anyway
and the user may use the function PGS_IO_L0_GetHeader() to retrieve
the header. That function will give a more detailed analysis of the
problem. Users should be aware, though, that if they proceed after getting
the return PGSIO_W_L0_CORRUPT_HEADER from this function they
do so at THEIR OWN RISK. This return value indicates that the file

 6-9 333-EMD-001, Rev. 05

header is corrupt and the use of any further Toolkit functions to attempt to
read the file may produce unexpected results.

 In the case of EDOS formatted Level 0 data files (PDS/EDS) the “header”
returned will actually be the Construction Record.

RELEASE NOTES:

 This function conforms to EDOS-EGS ICD (June 28, 1996)

 Note Regarding Use of the Process Control File:

 If more than one physical file is associated with a given virtual data set,
the entries in the Process Control File that map the data set from
file_logical to the physical files must appear in reverse numerical order.
For example, in a three-file data set, file instance #3 is listed first and file
instance #1 is listed last. This mechanism will become transparent in the
production system.

REQUIREMENTS: PGSTK-0140, PGSTK-0190, PGSTK-0240

 6-10 333-EMD-001, Rev. 05

Set Start Time

NAME: PGS_IO_L0_SetStart

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_SetStart(
 PGSt_IO_L0_VirtualDataSet virtual_file,
 PGSt_double start_time)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_SetStart(virtual_file, start_time)
 integer virtual_file
 double precision start_time

DESCRIPTION Sets the virtual file pointer so that the next call to the tool
PGS_IO_L0_GetPacket will read the first available packet at or after the
specified time.

INPUTS: virtual_file-The file descriptor for this virtual data set, returned by the
 call to PGS_IO_L0_Open

start_time-The start time of the desired packet. Format is TAI:
 continuous seconds since 12AM UTC Jan. 1, 1993.

OUTPUTS: NONE

RETURNS:
Table 6-2. PGS_IO_L0_SetStart Returns (1 of 2)

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_L0_VIRTUAL_DS_NOT_OPEN Virtual data set is not open
PGSIO_W_L0_TIME_NOT_FOUND Requested start time not found; file pointer position was unchanged
PGSIO_W_L0_PHYSICAL_CLOSE Failed to close physical file
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_L0_PHYSICAL_OPEN Unable to open physical file

 6-11 333-EMD-001, Rev. 05

Table 6-2. PGS_IO_L0_SetStart Returns (2 of 2)
Return Description

PGSIO_E_L0_SEEK_PACKET Unable to find requested packet
PGSIO_M_L0_HEADER_CHANGED New physical file open-file header has changed
PGSIO_W_L0_BITFLIP_IN_MICSEC Bit flip problem in the micro second field of a packet time

EXAMPLES: Set the time to start processing at 20 minutes after the data set start time.
Examples assume the data set start time has previously been returned from
PGS_IO_L0_Open.

C: PGSt_IO_L0_VirtualDataSet virtual_file;
PGSt_double start_time;
PGSt_double new_start_time;
PGSt_SMF_status returnStatus;

 new_start_time = start_time + 1200.0;

 returnStatus = PGS_IO_L0_SetStart(virtual_file,
 new_start_time);
if ((returnStatus != PGS_S_SUCCESS)&& (returnStatus
!=PGSIO_W_L0_BITFLIP_IN_MICSEC))
{
 goto EXCEPTION; /# GO TO EXCEPTION HANDLING #/
}

 else

 do something else;

}

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer pgs_io_l0_setstart
integer virtual_file
double precision start_time
double precision new_start_time
integer returnstatus

 new_start_time = start_time + 1200.0

 returnstatus = pgs_io_l0_setstart(virtual_file,
 new_start_time)

 6-12 333-EMD-001, Rev. 05

if (returnStatus .ne.
PGS_S_SUCCESS.and.returnStatus.ne.PGSIO_W_L0_BITFLIP_IN_MICS
EC) goto EXCEPTION

NOTES: Normal return is PGS_S_SUCCESS. During the search for the desired
packet for AM spacecraft a packet with bitflip problem in the micro
second field may be encountered. In that case the problematic packet will
be ignored and the search will continue. If no other errors occur them the
tool will return PGSIO_W_L0_BITFLIP_IN_MICSEC.

 A virtual data set must have been opened by PGS_IO_L0_Open before
this function is called.

RELEASE NOTES:

 There are no Release Notes.

REQUIREMENTS: PGSTK-0140, PGSTK-0200, PGSTK-0220, PGSTK-0240

 6-13 333-EMD-001, Rev. 05

Set Start Time and Count Packets

NAME: PGS_IO_L0_SetStartCntPkts

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_SetStart(
 PGSt_IO_L0_VirtualDataSet virtual_file,
 PGSt_double start_time
 PGSt_integer* totpacket_skip)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_SetStart(virtual_file, start_time,
 totpacket_skip)
 integer virtual_file
 double precision start_time
 integer totpacket_skip

DESCRIPTION Sets the virtual file pointer so that the next call to the tool
PGS_IO_L0_GetPacket will read the first available packet at or after the
specified time. Also tracks the number of packets skipped in the current
file.

INPUTS: virtual_file-The file descriptor for this virtual data set, returned by the
 call to PGS_IO_L0_Open

start_time-The start time of the desired packet. Format is TAI:
 continuous seconds since 12AM UTC Jan. 1, 1993.

OUTPUTS: totpacket_skip – The total number of packets skipped before the desired
packet selected at the specified time

 6-14 333-EMD-001, Rev. 05

RETURNS:
Table 6-3. PGS_IO_L0_SetStart Returns

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_L0_VIRTUAL_DS_NOT_OPEN Virtual data set is not open
PGSIO_W_L0_TIME_NOT_FOUND Requested start time not found; file pointer position was unchanged
PGSIO_W_L0_PHYSICAL_CLOSE Failed to close physical file
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_L0_PHYSICAL_OPEN Unable to open physical file
PGSIO_E_L0_SEEK_PACKET Unable to find requested packet
PGSIO_M_L0_HEADER_CHANGED New physical file open-file header has changed
PGSIO_W_L0_BITFLIP_IN_MICSEC Bit flip problem in the micro second field of a packet time

EXAMPLES: Set the time to start processing at 20 minutes after the data set start time.
Examples assume the data set start time has previously been returned from
PGS_IO_L0_Open.

C: PGSt_IO_L0_VirtualDataSet virtual_file;
PGSt_double start_time;
PGSt_double new_start_time;
PGSt_SMF_status returnStatus;
PGSt_integer totalpacket_skip;

 new_start_time = start_time + 1200.0;

 returnStatus = PGS_IO_L0_SetStart(virtual_file,
 new_start_time, &totalpacket_skip);
if ((returnStatus != PGS_S_SUCCESS)&&(returnStatus
!=PSGIO_W_L0_BITFLIP_IN_MICSEC))
{
 goto EXCEPTION; /# GO TO EXCEPTION HANDLING #/
}

 else

 }

 do something else;

 }

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’

 6-15 333-EMD-001, Rev. 05

INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer pgs_io_l0_setstart
integer virtual_file
integer totalpacket_skip
double precision start_time
double precision new_start_time
integer returnstatus

 new_start_time = start_time + 1200.0

 returnstatus = pgs_io_l0_setstart(virtual_file,
 new_start_time,totalpacket_skip)
if (returnStatus .ne.
PGS_S_SUCCESS.and.returnStatus.ne.PGSIO_W_L0_BITFLIP_IN_MICS
EC) goto EXCEPTION

NOTES: Normal return is PGS_S_SUCCESS. During the search for the desired
packet for AM spacecraft a packet with bit flip problem in the micro
second field may be encountered. In that case the problematic packet will
be ignored and the search will continue. If no other errors occur then the
tool will return PGSIO_W_L0_BITFLIP_IN_MICSEC.

 A virtual data set must have been opened by PGS_IO_L0_Open before
this function is called.

RELEASE NOTES:

 There are no Release Notes.

REQUIREMENTS: PGSTK-0140, PGSTK-0200, PGSTK-0220, PGSTK-0240

 6-16 333-EMD-001, Rev. 05

Get Header Data

NAME: PGS_IO_L0_GetHeader

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_GetHeader(
 PGSt_IO_L0_VirtualDataSet virtual_file,
 PGSt_integer header_buffer_size,
 PGSt_IO_L0_Header *header_buffer,
 PGSt_integer footer_buffer_size,
 PGSt_IO_L0_Footer *footer_buffer)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_GetHeader(virtual_file, header_buffer_size,
 header_buffer,
 footer_buffer_size,
 footer_buffer)
 integer virtual_file
 integer header_buffer_size
 character*(*) header_buffer
 integer footer_buffer_size
 character*(*) footer_buffer

DESCRIPTION: This tool reads header and footer information for the currently open
physical file into the user-supplied buffers. It is intended to be called
whenever the file header and footer data change, though it may be called
at any time. In the case EDOS formatted files this tool will return the
entire contents of the PDS/EDS Construction Record.

 The file header and footer data will change whenever a call to one of the
tools causes a new physical file to be opened. This will always occur upon
a call to PGS_IO_L0_Open, and may also occur upon calls to
PGS_IO_L0_SetStart and PGS_IO_L0_GetPacket. These latter two
signal this event via a return status code of
PGSIO_M_L0_HEADER_CHANGED. In the case of EDOS files, which

 6-17 333-EMD-001, Rev. 05

have no headers, no notice will be given when a new physical file is
opened. Typical use of this tool is in a loop of calls to read data packets.

INPUTS: virtual_file-The file descriptor for this virtual data set, returned by the
 call to PGS_IO_L0_Open

 header_buffer_size-Size in bytes of user-supplied header buffer

footer_buffer_size-Size in bytes of user-supplied footer data buffer. If 0,
do not read footer data (TRMM only)

OUTPUTS: header_buffer-User-supplied buffer containing the header, read in from
 the current physical file

footer_buffer-User-supplied buffer containing the footer data, read in from
the current physical file (TRMM only)

RETURNS:

Table 6-4. PGS_IO_L0_GetHeader Returns
Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_L0_BAD_BUF_SIZ Buffer size must be a positive integer
PGSIO_E_L0_VIRTUAL_DS_NOT_OPEN Virtual data set is not open
PGSIO_E_L0_FSEEK Failed to locate requested byte in file
PGSIO_W_L0_HDR_TIME_ORDER Time of last packet is earlier than first packet in file header
PGSIO_E_L0_BAD_VAR_HDR_SIZE Size of the variable header is invalid
PGSIO_W_L0_BAD_PKT_DATA_SIZE Total size of packet data is invalid
PGSIO_W_L0_BAD_PACKET_COUNT Total number of packets is invalid
PGSIO_W_L0_BAD_FOOTER_SIZE Size of the file footer is invalid
PGSIO_W_L0_ZERO_PACKET_COUNT Total number of packets is zero
PGSIO_W_L0_HDR_BUF_TRUNCATE Insufficient header buffer size - data
PGSIO_W_L0_FTR_BUF_TRUNCATE Insufficient footer buffer size - data
PGSIO_W_L0_ALL_BUF_TRUNCATE Insufficient header buffer AND footer buffer sizes - data

truncated
PGSIO_E_L0_UNEXPECTED_EOF Encountered unexpected end-of-file
PGS_E_UNIX UNIX error (check log file for type of error)
PGSIO_E_L0_BAD_SPACECRAFT_TAG Invalid spacecraft tag

EXAMPLES: The example shows how to use this function in conjunction with
PGS_IO_L0_GetPacket to read Level 0 data from a single virtual data set.
This algorithm works whether the virtual data set consists of only one, or
of several physical files. All data in the virtual data set are read.

 For clarity, error handling is omitted from the examples.

 6-18 333-EMD-001, Rev. 05

C: #define HEADER_BUFFER_MAX 556 /# max # header bytes #/
#define FOOTER_BUFFER_MAX 100000 /# max # footer bytes #/
#define PACKET_BUFFER_MAX 7132 /# max # packet bytes #/

 PGSt_IO_L0_VirtualDataSet virtual_file;

 PGSt_IO_L0_Header header_buffer[HEADER_BUFFER_MAX];
PGSt_IO_L0_Footer footer_buffer[FOOTER_BUFFER_MAX];
PGSt_IO_L0_Packet packet_buf[PACKET_BUFFER_MAX];

 PGSt_integer file_loop_flag;
PGSt_integer packet_loop_flag;

 file_loop_flag = 1;
while(file_loop_flag)
{
 returnStatus = PGS_IO_L0_GetHeader(virtual_file,
 HEADER_BUFFER_MAX, header_buffer,
 FOOTER_BUFFER_MAX, footer_buffer);

 /# Unpack and/or save or process header and footer data
 here #/

 packet_loop_flag = 1;
 while(packet_loop_flag)
 {
 returnStatus = PGS_IO_L0_GetPacket(
 virtual_file, PACKET_BUFFER_MAX,
 packet_buf);

 switch (returnStatus)
 {
 case PGSIO_M_L0_HEADER_CHANGED:
 /# end of this physical file #/
 packet_loop_flag = 0;
 break;

 case PGSIO_W_L0_END_OF_VIRTUAL_DS:
 /# end of this virtual data set #/
 file_loop_flag = 0;
 packet_loop_flag = 0;
 break;
 }

 /# Unpack and/or save or process packet data here #/

 } /# End while (packet_Loop_flag) #/

 } /# End while (file_Loop_flag) #/

 6-19 333-EMD-001, Rev. 05

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 character*556 header_buffer
character*7132 packet_buffer
character*100000 footer_buffer
integer pgs_io_l0_getheader
integer pgs_io_l0_getpacket
integer virtual_file
integer file_loop_flag
integer packet_loop_flag
integer returnstatus

 file_loop_flag = 1
do while(file_loop_flag)

 returnstatus = pgs_io_l0_getheader(virtual_file,
 556, header_buffer,
 100000, footer_buffer)

C Unpack and/or save or process header and footer data here

packet_loop_flag = 1

do while(packet_loop_flag)

returnStatus = pgs_io_l0_getpacket(

virtual_file, PACKET_BUFFER_MAX, packet_buf)

if (returnstatus .eq. PGSIO_M_L0_HEADER_CHANGED) then

C end of this physical file

packet_loop_flag = 0

 else if (returnstatus .eq.
PGSIO_W_L0_END_OF_VIRTUAL_DS) then

C end of this virtual data set

file_loop_flag = 0

packet_loop_flag = 0

end if

 6-20 333-EMD-001, Rev. 05

C Unpack and/or save or process packet data here

end do

end do

NOTES: Memory must be allocated to the output buffers before this tool is called.
Failure to do this may result in a core dump. (In FORTRAN 77, the buffer
CHARACTER array length must be hardcoded.)

 If the tool determines that the actual size of the file header or footer is
larger than the user-supplied buffer size, the header or footer data is
truncated to fit the user buffer. In this case, the return status will be
PGSIO_W_L0_HDR_BUF_TRUNCATE (if header buffer too small),
PGSIO_W_L0_FTR_BUF_TRUNCATE (if footer buffer too small), or
.PGSIO_W_L0_ALL_BUF_TRUNCATE (if both buffers too small).

 To retrieve the header and footer information from the first physical file in
a virtual data set, this tool must be called after first having opened the
virtual data set using the tool PGS_IO_L0_Open. To retrieve the header
and footer information from subsequent physical files within a virtual data
set, this tool should be called after the science software receives the return
status PGSIO_M_L0_HEADER_CHANGED from the tool
PGS_IO_L0_GetPacket.

 A virtual data set must have been opened by PGS_IO_L0_Open before
this function is called. If the header of the currently open physical file is
found to be corrupted, this function will return a warning to that effect:

 PGSIO_W_L0_HDR_TIME_ORDER
PGSIO_E_L0_BAD_VAR_HDR_SIZE
PGSIO_W_L0_BAD_PKT_DATA_SIZE
PGSIO_W_L0_BAD_PACKET_COUNT
PGSIO_W_L0_BAD_FOOTER_SIZE
PGSIO_W_L0_ZERO_PACKET_COUNT

 The above returns indicate an error was found in the file header. The
header buffer will be returned, although it MAY be truncated. Similarly
the footer buffer (TRMM only) may be truncated or even missing if the
corrupt header file indicated that the start of the footer buffer was at an
offset (in the file) greater than the size of the physical file. The user is
cautioned to check the returned buffer(s) carefully in these cases. Further,
the user is cautioned that while the function PGS_IO_L0_GetPacket() may
still be called, that function may produce unexpected results if the file
header is corrupt.

 6-21 333-EMD-001, Rev. 05

RELEASE NOTES:

This function conforms to EDOS-EGS ICD (June 28, 1996)

REQUIREMENTS: PGSTK-0140, PGSTK-0210, PGSTK-0230, PGSTK-0240

 6-22 333-EMD-001, Rev. 05

Get a Single Packet

NAME: PGS_IO_L0_GetPacket

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_GetPacket(
 PGSt_IO_L0_VirtualDataSet virtual_file,
 PGSt_integer packet_buffer_size,
 PGSt_IO_L0_Packet *packet_buffer)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_GetPacket(virtual_file, packet_buffer_size,
 packet_buffer)
 integer virtual_file
 integer packet_buffer_size
 character*(*) packet_buffer

DESCRIPTION: Reads a single data packet from a Level 0 virtual data set into the user-
supplied buffer.

INPUTS: virtual_file-The file descriptor for this virtual data set returned by
 PGS_IO_L0_Open.

packet_buffer_size-Size in bytes of user-supplied packet buffer.

OUTPUTS: packet_buffer-User-supplied buffer containing the data packet read in
 from the specified virtual data set.

 6-23 333-EMD-001, Rev. 05

RETURNS:
Table 6-5. PGS_IO_L0_GetPacket Returns

Return Description
PGS_S_SUCCESS Successful completion
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_L0_PHYSICAL_NOT_OPEN No physical file currently open for this virtual data set
PGSIO_E_L0_PKT_BUF_OVERFLOW Packet buffer too small; no data was read
PGSIO_E_L0_UNEXPECTED_EOF Encountered unexpected end-of-file
PGSIO_W_L0_PKT_BUF_TRUNCATE Insufficient buffer size-data truncated
PGSIO_W_L0_END_OF_VIRTUAL_DS Reached end of the current data set
PGSIO_M_L0_HEADER_CHANGED New physical file open-file header has changed
PGSIO_E_L0_NEXT_PHYSICAL Error opening next physical file in sequence
PGSIO_E_L0_SEEK_1ST_PACKET Can’t find first packet in dataset
PGSIO_W_L0_BUFTRUNC_END_DS Insufficient packet buffer size-reached end of the current

data set
PGSIO_W_L0_BUFTRUNC_HDR_CHG Insufficient packet buffer size-new physical file open-file

header has changed
PGSIO_E_L0_BUFTRUNC_NXTFILE Insufficient buffer size-error opening next physical file in

sequence
PGS_E_UNIX UNIX error (check StatusLog file)

EXAMPLES: The example shows how to use this function in conjunction with
PGS_IO_L0_GetPacket to read Level 0 data from a single virtual data set.
This algorithm works whether the virtual data set consists of only one, or
of several physical files. All data in the virtual data set are read.

 For clarity, error handling is omitted from the examples.

C: #define HEADER_BUFFER_MAX 556 /# max # header bytes #/
#define FOOTER_BUFFER_MAX 100000 /# max # footer bytes #/
#define PACKET_BUFFER_MAX 7132 /# max # packet bytes #/

 PGSt_IO_L0_VirtualDataSet virtual_file;

 PGSt_IO_L0_Header header_buffer[HEADER_BUFFER_MAX];
PGSt_IO_L0_Footer footer_buffer[FOOTER_BUFFER_MAX];
PGSt_IO_L0_Packet packet_buf[PACKET_BUFFER_MAX];

 PGSt_integer file_loop_flag;
PGSt_integer packet_loop_flag;

 file_loop_flag = 1;
while(file_loop_flag)
{
 returnStatus = PGS_IO_L0_GetHeader(virtual_file,

 6-24 333-EMD-001, Rev. 05

 HEADER_BUFFER_MAX, header_buffer,
 FOOTER_BUFFER_MAX, footer_buffer);

 /# Unpack and/or save or process header and footer data
 here #/

 packet_loop_flag = 1;
 while(packet_loop_flag)
 {
 returnStatus = PGS_IO_L0_GetPacket(
 virtual_file, PACKET_BUFFER_MAX,
 packet_buf);

 switch (returnStatus)
 {
 case PGSIO_M_L0_HEADER_CHANGED:
 /# end of this physical file #/
 packet_loop_flag = 0;
 break;

 case PGSIO_W_L0_END_OF_VIRTUAL_DS:
 /# end of this virtual data set #/
 file_loop_flag = 0;
 packet_loop_flag = 0;
 break;
 }

 /# Unpack and/or save or process packet data here #/

 } /# End while (packet_loop_flag) #/

 } /# End while (file_loop_flag) #/

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 character*556 header_buffer
character*7132 packet_buffer
character*100000 footer_buffer
integer pgs_io_l0_getheader
integer pgs_io_l0_getpacket
integer virtual_file
integer file_loop_flag

 6-25 333-EMD-001, Rev. 05

integer packet_loop_flag
integer returnstatus

 file_loop_flag = 1
do while(file_loop_flag)

 returnstatus = pgs_io_l0_getheader(virtual_file,
 556, header_buffer,
 100000, footer_buffer)

C Unpack and/or save or process header and footer data here

packet_loop_flag = 1

do while(packet_loop_flag)

returnStatus = pgs_io_l0_getpacket(

virtual_file, PACKET_BUFFER_MAX, packet_buf)

if (returnstatus .eq. PGSIO_M_L0_HEADER_CHANGED) then

C end of this physical file

packet_loop_flag = 0

 else if (returnstatus .eq.
PGSIO_W_L0_END_OF_VIRTUAL_DS) then

C end of this virtual data set

file_loop_flag = 0

packet_loop_flag = 0

end if

C Unpack and/or save or process packet data here

end do

end do

NOTES: Memory must be allocated to the output buffer before this tool is called.
Failure to do this may result in a core dump. (In FORTRAN 77, the buffer
CHARACTER array length must be hardcoded.)

 Normal return is PGS_S_SUCCESS. If getting the next packet requires
that a new physical file be opened, the header and quality data will
change. In this case, the return status is set to
PGSIO_M_L0_HEADER_CHANGED. This allows the user to test the
return status and get updated header and quality data using the tool

 6-26 333-EMD-001, Rev. 05

PGS_IO_L0_GetHeader, in the case where there is more than one physical
file per virtual data set.

 If the tool determines that the size of the packet is larger than the user
buffer size, as specified by the parameter packet_size, it will truncate the
packet to fit the user buffer. In this case, the return status will be
PGSIO_W_L0_BUFFER_TRUNCATE.

 Packet formats for TRMM, EOS AM (GIIS), EOS PM (GIRD and GIIS)
and EOS AURA (GIRD) are supported.

 The source document for EOS AM, EOS PM and EOS AURA packet data
format is the Interface Control Document Between The Earth Observing
System (EOS) Data and Operation System (EDOS) and the EOS Ground
System (EGS) Elements (510-ICD-EDOS/EGS CDPL B301), Mission
Operations and Data System Directorate, Goddard Space Flight Center,
November 5, 1999.

 A virtual data set must have been opened by PGS_IO_L0_Open before
this function is called.

 This function returns no data if the packet buffer size is less than 6 bytes
(the primary packet header size). It returns a warning and a truncated
buffer if the packet buffer size is more than 6 bytes but less than the actual
packet length.

REQUIREMENTS: PGSTK-0140, PGSTK-0200, 0240

 6-27 333-EMD-001, Rev. 05

Close a Virtual Data Set

NAME: PGS_IO_L0_Close

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_Close(
 PGSt_IO_L0_VirtualDataSet virtual_file)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_Close(virtual_file)
 integer virtual_file

DESCRIPTION: This tool closes a virtual data set opened by a call to the tool
PGS_IO_L0_Open.

INPUTS: virtual_file-The file descriptor for this virtual data set, returned by the
 call to PGS_IO_L0_Open.

OUTPUTS: NONE

RETURNS:
Table 6-6. PGS_IO_L0_Close Returns

Return Description
PGS_S_SUCCESS Successful completion
PGSIO_E_L0_VIRTUAL_DS_NOT_OPEN Virtual data set is not open
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_W_L0_PHYSICAL_CLOSE Failed to close physical file

EXAMPLES: Close a virtual data set opened with a call to PGS_IO_L0_Open. Go to
exception handling if there was an error.

C: PGSt_SMF_status returnStatus = PGS_S_SUCCESS;
PGSt_IO_L0_VirtualDataSet virtual_file;

 returnStatus = PGS_IO_L0_Close(virtual_file);
if (returnStatus != PGS_S_SUCCESS) goto EXCEPTION;

 6-28 333-EMD-001, Rev. 05

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’
integer pgs_io_l0_close
integer returnstatus
integer virtual_file

 returnstatus = pgs_io_l0_close(virtual_file)
if (returnstatus != PGS_S_SUCCESS) goto 9999

NOTES: If a physical file is currently open, PGS_IO_Gen_Close is called to close
it. Otherwise this step is skipped. In either case, the return will be
PGS_S_SUCCESS.

REQUIREMENTS: PGSTK-0140, PGSTK-0190

 6-29 333-EMD-001, Rev. 05

Create a Simulated Level 0 Data File

NAME: PGS_IO_L0_File_Sim

SYNOPSIS:

C: #include <PGS_IO.h>
#include <PGS_IO_L0.h>

 PGSt_SMF_status
PGS_IO_L0_File_Sim(
 PGSt_tag spacecraftTag,
 PGSt_integer appID[],
 PGSt_integer firstPacketNum
 char startUTC[28],
 PGSt_integer numValues,
 PGSt_double timeInterval,
 PGSt_integer dataLength[],
 PGSt_integer otherFlags[2],
 char *filename,
 void *appData,
 PGSt_uinteger qualMissLen[2])
 void *qualData)
 void *missData)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function pgs_io_l0_file_sim (spacecrafttag, appid,firstpacketnum,
 startutc, numvalues,
 timeinterval, datalength,
 otherflags, filename,appdata,
 qualmisslen, qualdata,
 missdata)
 integer spacecrafttag
 integer appid(*)
 integer firstpacketnum
 character*27 startutc
 integer numvalues
 double precision timeinterval
 integer datalength(*)

 6-30 333-EMD-001, Rev. 05

 integer otherflags(2)
 character*(*) filename
 (any) appdata
 integer qualmisslen(2)
 (any) qualdata
 (any) missdata

DESCRIPTION: This tool creates file(s) containing simulated Level 0 data, each of which
has a file header, packet data, and a file footer. For TRMM, a detached
SFDU header file is also created for each Level 0 data file.

INPUTS: spacecraftTag-The spacecraft identifier desired for the output data.
 appID-Array of application process identifiers (APIDs), one for each

 packet to be generated
 firstPacketNum-Value of Packet Sequence Count to use for the initial

 packet
 startUTC-The UTC time of the first packet. Formats supported:

 a) YYYY-MM-DDThh:mm:ss.dddddd
b) YYYY-DDDThh:mm:ss.dddddd

 numValues-The number of packets to generate
 timeInterval-Time interval (in seconds) between packets
 dataLength-Array of lengths, in bytes, of the Application Data for each

packet. Does not include lengths of primary and secondary packet headers.
 otherFlags-Array of length 2 with file header values

 otherFlags[0]: bit-packed “Processing Options” byte TRMM
 values:

 bit 3 on-Redundant Data Deleted
 bit 6 on-Data Merging
 bit 7 on-RS Decoding
 bits 1,2,4,5,8-always off

For example, to simulate Redundant Data Deleted and RS Decoding, turn
bits 3 and 7 on, which is decimal 68.

 So set otherFlags[0]=68.
 otherFlags[1]: “Data type Flags” byte TRMM values:

 otherFlags[1]=1, Routine production data
 otherFlags[1]=2, Quicklook data

(NOTE: These two fields are simply written to the appropriate place in the
file header; no processing is done in this function based on their
values.)

 filename-The name of the file to be created containing the L0 packets.

 6-31 333-EMD-001, Rev. 05

 appData-Optional user-defined input of the packet application data field.
Does not include packet header data.
In C, if appData=NULL, a block of data of length equal to the largest

value in array dataLength is filled with zeroes, for each packet.
 (The remaining inputs are for TRMM file footer processing only. They are

ignored for other platforms.)
 qualMissLen-Array of length 2 with file footer section lengths

 qualMissLen[0]: quality (QAC) buffer length if qualMissLen[0]=0,
 no quality data are written to the file qualMissLen[1]: missing data
 (MDUL) buffer length if qualMissLen[1]=0 or qualMissLen[0]=0,
 no missing data are written to the file (QAC length and MDUL
 length are always written to the file)

 qualData-Quality and Accounting Capsule (QAC) data In C, if
 qualData=NULL, a block of data of length qualMissLen[0] is
filled with zeroes and written to the file. (In FORTRAN you pass a zero-
 filled array for this.)

 missData-Missing Data Unit List (MDUL) data In C, if
 missData=NULL, a block of data of length qualMissLen[1] is
 filled with zeroes and written to the file. (In FORTRAN you pass a
 zero-filled array for this.)

OUTPUTS: NONE

RETURNS:
Table 6-7. PGS_IO_L0_File_Sim Returns

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_L0_BAD_NUM_PKTS Illegal number of packets
PGSIO_E_L0_BAD_APP_ID At least 1 packet had a bad Application ID
PGSIO_E_L0_BAD_FIRST_PKTNUM Illegal first packet number
PGSTD_E_SC_TAG_UNKNOWN spacecraft tag is unknown or not currently supported
PGSIO_E_L0_BAD_DATA_LENGTH At least 1 packet had a bad data length
PGSIO_E_L0_BAD_NUM_APP_IDS Illegal number of differing Application IDs
PGSTD_E_TIME_FMT_ERROR Error in ASCII time string format (generic format: YYYY-MM-DDThh:mm:ss.ddddddZ)
PGSTD_E_TIME_VALUE_ERROR Error in ASCII time string value (e.g., hours > 23)
PGS_E_TOOLKIT Unspecified Toolkit error (check StatusLog file)
PGS_E_UNIX UNIX error (check StatusLog file)
PGSMEM_E_MAXSIZE Maximum memory size reached: %d in bytes
PGSIO_E_L0_PHYSICAL_OPEN Unable to open physical file
PGSTD_E_DATE_OUT_OF_RANGE the input time is outside the range of allowable values for the spacecraft clock

 6-32 333-EMD-001, Rev. 05

EXAMPLES: Generate a CERES L0 science telemetry file named
TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset_01, containing 3
packets of different lengths, starting at midnight Dec. 1, 1997 and spaced
at 6.6 second intervals; also add QAC and MDUL data, filled with zeroes.

C: #define N 3

 PGSt_tag spacecraftTag = TRMM;
PGSt_integer appID[N] = {54,54,54};
PGSt_integer firstPacketNum = 1;
char *startUTC = “1997-12-01T00:00:00”;
PGSt_integer numValues = N;
PGSt_double timeInterval = 6.6;
PGSt_integer dataLength[N];
PGSt_integer otherFlags[2];
char *filename
 = “TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset_01”;
char appData[9000];
PGSt_uinteger qualMissLen[2]={28,16};
char *qualData=NULL;
char *missData=NULL;

PGSt_SMF_status returnStatus;

 otherFlags[0] = 68; /* Redundant Data Deleted & RS Decoding
 */
otherFlags[1] = 1; /* Routine production data */

 /* Set lengths of packet application data */
dataLength[0] = 2000;
dataLength[1] = 3000;
dataLength[2] = 4000;

 /* Fill appData buffer as desired here.

 Do not include packet header data—it is filled by this
 tool.

Fill first 2000 bytes with first packet data,

next 3000 bytes with second packet data,

last 4000 bytes with third packet data */

/* Create simulated file */

 returnStatus =
 PGS_IO_L0_File_Sim(
 spacecraftTag,

 6-33 333-EMD-001, Rev. 05

 appID,
 firstPacketNum,
 startUTC,
 numValues,
 timeInterval,
 dataLength,
 otherFlags,
 filename,
 appData,
 qualMissLen,
 qualData,
 missData,
);

FORTRAN: implicit none

 integer pgs_io_l0_file_sim

 integer spacecraftTag
integer appid(3)
integer firstpacketnum
character*27 startutc
integer numvalues
double precision timeinterval
integer datalength(3)
integer otherflags(2)
character*256 filename
character*9000 appdata
integer qualmisslen(2)
character*28 qualdata
character*16 missdata

 integer returnstatus

 spacecraftTag = TRMM
appid(1) = 54
appid(2) = 54
appid(3) = 54
firstpacketnum = 1
startutc = ‘1994-12-31T12:00:00.000000’
numvalues = 3
timeinterval = 6.6

C Set lengths of packet application data
datalength(1) = 2000
datalength(2) = 3000
datalength(3) = 4000

 6-34 333-EMD-001, Rev. 05

C Fill data to write to file header
otherflags(1) = 68 ! Redundant Data Deleted & RS Decoding
otherflags(2) = 1 ! Routine production data
filename = ‘TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset_01’
qualmisslen(1) = 28
qualmisslen(2) = 16

C Fill appData buffer as desired here.

C Do not include packet header data—it is filled by this tool.

C Fill first 2000 bytes with first packet data,

C next 3000 bytes with second packet data,

C last 4000 bytes with third packet data

C Create simulated file

returnstatus = pgs_io_l0_file_sim(

 spacecrafttag,
 appid,
 firstpacketnum,
 startutc,
 numvalues,
 timeinterval,
 datalength,
 filename,
 otherflags
 appdata,
 qualmisslen,
 qualdata,
 missdata)

NOTES: This tool is intended for use in science software development and testing,
but not for production purposes.

 When used to create file for EOS AM or EOS PM or EOS AURA (EDOS
format) the Construction Record creation tool
(PGS_IO_L0_EDOS_hdr_Sim()) must also be called to create the
PDS/EDS Construction Record.

RELEASE NOTES:

 This function conforms to EDOS-EGS ICD (June 28, 1996)

REQUIREMENTS: There is no SDP Toolkit requirement for this functionality. This tool was
created to support internal ECS SDP Toolkit development and testing, and
it is being provided as a service to the user.

 6-35 333-EMD-001, Rev. 05

6.2.1.2 HDF File I/O Tools

The ECS standard file format for transmission of datasets is National Center for Supercomputer
Application’s (NCSA’s) Hierarchical Data Format (HDF). ECS has built extensions to NCSA
HDF4 and HDF5, known as HDF-EOS and HDF-EOS5, which will support most recognized
EOS era earth sciences data structures. Presently these data structures are grid, point and swath
structures. If, in some cases, these are not sufficient, NCSA HDF could be used along with ECS
metadata to specify an output file. Version 2.15 of HDF-EOS and version 1.11 of HDF-EOS5 are
delivered with SCF Toolkit 5.2.15.

HDF-EOS (HDF-EOS5) is built on HDF4 (HDF5) low level functions and NCSA conventions
were adhered to. The most prominent example is the user input of physical file handles. HDF
requires physical handles, while the SDP toolkit requires logical handles. In order to make the
toolkit compatible with HDF, the user will make one additional call to a process control
function, obtain a physical handle and then open an HDF (HDF-EOS) file. Toolkit error handling
functions may be used as necessary or desired. See the example in this section.

Important: HDF was designed to be a transport file format only, and support for such endeavors
as updating a pre-existing file is very weak. Because of this and other performance
considerations, HDF may not be the best choice of file format to use in internal processing of
your files. We therefore strongly recommend that you use the Generic (Section 6.2.1.3) and
Temporary (Section 6.2.1.6) I/O functions for internal processing, and reserve the use of HDF
for initial read and final write of data products meant for archival and distribution.

EXAMPLE OF USAGE OF NCSA HDF FUNCTIONS

The following code fragments are simple examples of how the science software might use the
SDP Toolkit logical-to-physical filename translation function in conjunction with the NCSA
HDF4 open function. See Sections 6.2.2, 6.2.3, Appendices C and B.

The examples assume the following exists in the Process Control File (PCF):

? PRODUCT OUTPUT FILES

399|test10.hdf|/fire2/toma/data||||3

399|test9.hdf|/fire2/toma/data||||2

399|test8.hdf|/fire2/toma/data||||1

C #include <PGS_PC.h>
#include <hdf.h>
#include <dfi.h>
#define HDF_INFILE 399
PGSt_integer version;
char physical_filename[PGSd_PC_FILE_PATH_MAX];
PGSt_SMF_status returnStatus;
int32 hdf_status;
int16 n_dds;
/*

 6-36 333-EMD-001, Rev. 05

Begin example
*/
version = 1;
returnStatus = PGS_PC_GetReference
 (HDF_FILE, &version, physical_filename);
/*
Variable physical_filename now contains the string
“/fire2/toma/data/test10.hdf”
Variable version now contains the value 2, i.e., the number
of versions left in order, below this version in the PC file
*/
/*
Open the HDF file
*/
n_dds = 5; /* No. HDF data descriptor blocks */
hdf_status = Hopen(physical_filename,DFACC_CREATE,n_dds);

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INTEGER HDF_INFILE
PARAMETER (HDF_INFILE=399)
CHARACTER*(*) physicalfilename
INTEGER pgs_pc_getreference
INTEGER version
INTEGER returnstatus
INTEGER hdfstatus
INTEGER ndds

 C

 C Begin example

 C

 version = 1
returnstatus = pgs_pc_getreference
 . (HDF_INFILE, version, physicalfilename)

 C

 C Variable physicalfilename now contains the string

 C “/fire2/toma/data/test10.hdf”

 C Variable version now contains the value 2, i.e., the number

 6-37 333-EMD-001, Rev. 05

 C of versions left in order below this version in the PC file

 C

 C Open the HDF file

 C

 ndds = 5 ! No. HDF data descriptor blocks
hdfstatus = hopen(physicalfilename,DFACC_CREATE,ndds)

NOTES:

a. In order for this tool to work properly in the SCF environment, a Process Control File
(PCF) must first be created by the science software developer. This file is part of the
mechanism that maps the logical file identifiers in the science code to physical filenames.
(This mapping will be performed by the scheduling subsystem in the DAAC
environment.) See Section 4.2.2, “File Management,” for further discussion. UNIX
environment variable $PGS_PC_INFO_FILE must point to this file.

 In general, the PCF created by the user must follow the format given in Appendix C.

b. Currently, the Toolkit installation script installs HDF 4.2r3 and hdf5-1.6.7.

c. Functions that write error messages to a log file are now available. See the Status
Message (SMF) tool section.

6.2.1.3 Generic File I/O Tools

This section includes tools for performing I/O functions on files that are not in the ECS standard
format, i.e., HDF. The file open tools (Gen_Open and Gen_OpenF) are used by the science
software to open miscellaneous files, which means any files that are not HDF, Level 0, ancillary,
temporary or intermediate files (see sections 6.2.1.2, 6.2.1.1, 6.3.1, and 6.2.1.6). The file close
tools (Gen_Close and Gen_CloseF) are used in science software to close these miscellaneous
files, and also to close temporary and intermediate files.

The tools in this section are also used by other Toolkit functions, to access ancillary files (section
6.3.1), Level 0 files (section 6.2.1.1) and other miscellaneous files.

There are three items that apply to this entire subgroup of tools:

a. These tools only perform open and close functions on files. Reads, writes and other I/O
functions are to be done by native C and FORTRAN I/O.

b. Due to file handle and other considerations it was not possible to bind FORTRAN to the
C tools using the macro binding package. Unlike the rest of the Toolkit, these functions
have separate FORTRAN versions.

c. Science software should use the PGS_IO_Temp_Open tool to open a temporary or
intermediate file; see Section 6.2.1.6.

 6-38 333-EMD-001, Rev. 05

Special note regarding FORTRAN 90: Tools PGS_IO_Gen_OpenF and
PGS_IO_Gen_Temp_OpenF now have FORTRAN 90 versions. These versions support two
specific usages of the F90 OPEN function that are not supported in ANSI FORTRAN 77; they
do not support all F90 options of OPEN. At Toolkit installation time, you select between F77
and F90, and the appropriate source code file is compiled; the function names are the same in
both versions of FORTRAN. Options and text that apply only to FORTRAN 90 are marked in
this document as ***F90 SPECIFIC***.

 6-39 333-EMD-001, Rev. 05

Open a Generic File (C Version)

NAME: PGS_IO_Gen_Open()

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_Gen_Open(
 PGSt_PC_Logical file_logical,
 PGSt_IO_Gen_AccessType file_access,
 PGSt_IO_Gen_FileHandle **file_handle,
 PGSt_integer file_version)

FORTRAN: (not applicable)

DESCRIPTION: Upon a successful call, this function will provide the argument
PGSt_IO_Gen_FileHandle to support other “C” library stream
manipulation routines.

INPUTS: file_logical-User defined logical file identifier

 file_access-type of access granted to opened file:

Table 6-8. File Access Type
Toolkit C Description

PGSd_IO_Gen_Read “r” Open file for reading
PGSd_IO_Gen_Write “w” Open file for writing, truncating existing file to 0 length, or creating a

new file
PGSd_IO_Gen_Append “a” Open file for writing, appending to the end of existing file, or creating

file
PGSd_IO_Gen_Update “r+” Open file for reading and writing
PGSd_IO_Gen_Trunc “w+” Open file for reading and writing, truncating existing file to zero

length, or creating new file
PGSd_IO_Gen_Append
Update

“a+” Open file for reading and writing, to the end of existing file, or
creating a new file; whole file can be read, but writing only
appended

file_version-specific version of the logical file. (NOTE: this value will
default to ‘1’ for the interim delivery. Multiple file versions will
be a capability in Toolkit 3 and later.)

OUTPUTS: file_handle-used to manipulate files with other “C” library stream I/O
 routines

 6-40 333-EMD-001, Rev. 05

RETURNS:
Table 6-9. PGS_IO_Gen_Open Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX system error
PGSIO_E_GEN_OPENMODE Invalid access mode
PGSIO_E_GEN_FILE_NOEXIST No entry for file logical ID in

$PGS_PC_INFO_FILE
PGSIO_E_GEN_REFERENCE_FAILURE Can not find physical file name with logical ID in

$PGS_PC_INFO_FILE
PGSIO_E_GEN_BAD_ENVIRONMENT Environment error reported by Process Control

 (NOTE: the above are short descriptions only; full text of messages
appears in files $PGSMSG/PGS_IO_1.t. Descriptions may change in
future releases depending on external ECS design.)

EXAMPLE: // This example illustrates how to open a Product Output
 File for writing //

 PGSt_SMF_status returnStatus;
PGSt_PC_Logical logical;
PGSt_IO_Gen_AccessType access;
PGSt_IO_Gen_FileHandle *handle;
PGSt_integer version;

 logical = 10;
version = 1; // will default to 1 for Toolkit 3 on out //
access = PGSd_IO_Gen_Write;
returnStatus = PGS_IO_Gen_Open(logical,access,&handle,
 version);
if (returnStatus != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
 .
 .
 .
EXCEPTION:

NOTES: A file opened for write that already exists will be overwritten.

 This function will support all POSIX modes of fopen.

 While all modes of access are supported for this tool, those modes that
allow for writing to a file (i.e., not PGSd_IO_Gen_Read) are intended for
Toolkit access only. The only files that the science software should write
to are product output files (HDF) and Temporary, or Intermediate files.

 6-41 333-EMD-001, Rev. 05

The only exceptions to this are for Support Output files that may need to
be archived, but which are not considered to be products.

!!!!!!!!!!! ALERT !!!!!!!!!!!

During testing of this tool, the mode AppendUpdate (a+)!! was found to
produce results that were not consistent with the documented POSIX
standard. The sort of behavior that was typically observed was for data,
buffered during a read operation, to be appended to the file along with
other data that was being written to the file. Note that this behavior could
not be attributed to the Toolkit since the same behavior was revealed when
purely “POSIX” calls were used.

IMPORTANT TOOLKIT 5 NOTES

The following environment variable MUST be set to assure proper
operation:
PGS_PC_INFO_FILE path to process control file
However, the following environment variables are NO LONGER
recognized by the Toolkit as such:
 PGS_PRODUCT_INPUT path to standard input files

PGS_PRODUCT_OUTPUT path to standard output files
PGS_SUPPORT_INPUT path to supporting input files
PGS_SUPPORT_OUTPUT path to supporting output files

Instead, the default paths, which were defined by these environment
variables in previous Toolkit releases, may now be specified as part of the
Process Control File (PCF). Essentially, each has been replaced by a
global path statement for each of the respective subject fields within the
PCF. To define a global path statement, simply create a record that begins
with the ‘!’ symbol defined in the first column, followed by the global
path to be applied to each of the records within that subject field. Only one
such statement can be defined per subject field and it must be appear prior
to any dependent subject entry.

 The status condition PGSIO_E_GEN_BAD_ENVIRONMENT now
indicates an error status on the global path statement as defined in the
PCF, and NOT on an environment variable. However, as with previous
releases, the status message associated with this condition may reference
the above “tokens,” but this is only to indicate which of the global path
statements is problematic.

REQUIREMENTS: PGSTK-0360, PGSTK-1360

 6-42 333-EMD-001, Rev. 05

Open a Generic File (FORTRAN Version)

NAME: PGS_IO_Gen_OpenF()

SYNOPSIS:

C: (not applicable)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function pgs_io_gen_openf(file_logical, file_access,
 record_length, file_handle,
 file_version)

 integer file_logical
integer file_access
integer record_length
integer file_handle
integer file_version

DESCRIPTION: Upon a successful call, this function will allocate a logical unit number to
support FORTRAN READ and WRITE statements. This is returned to the
user via the parameter file_handle. The user provides the logical file
identifier and file version number, which internally get mapped to the
associated physical file.

INPUTS: file_logical-User defined logical file identifier

 file_access-type of access granted to opened file:

Table 6-10. File Access Type (1 of 2)
PGS FORTRAN Access Mode Rd/Wr/Update/

Append
FORTRAN 77/90

‘access=’
FORTRAN 77/90

‘form=’
PGSd_IO_Gen_RseqFrm Read Sequential Formatted
PGSd_IO_Gen_RseqUnf Read Sequential Unformatted
PGSd_IO_Gen_RdirFrm Read Direct Formatted
PGSd_IO_Gen_RdirUnf Read Direct Unformatted
PGSd_IO_Gen_WseqFrm Write Sequential Formatted
PGSd_IO_Gen_WseqUnf Write Sequential Unformatted
PGSd_IO_Gen_WdirFrm Write Direct Formatted

 6-43 333-EMD-001, Rev. 05

Table 6-10. File Access Type (2 of 2)
PGS FORTRAN Access Mode Rd/Wr/Update/

Append
FORTRAN 77/90

‘access=’
FORTRAN 77/90

‘form=’
PGSd_IO_Gen_WdirUnf Write Direct Unformatted
PGSd_IO_Gen_UseqFrm Update Sequential Formatted
PGSd_IO_Gen_UseqUnf Update Sequential Unformatted
PGSd_IO_Gen_UdirFrm Update Direct Formatted
PGSd_IO_Gen_UdirUnf Update Direct Unformatted
F90 SPECIFIC
PGSd_IO_Gen_AseqFrm Append Sequential Formatted
PGSd_IO_Gen_AseqUnf Append Sequential Unformatted

 record_length-record length must be greater than 0 for direct access

F90 SPECIFIC must be greater than or equal to 0 for sequential access; if 0, file is
opened with default record length

file_version-version of file to open (minimum value = 1)

OUTPUTS: file_handle-used to manipulate files READ and WRITE

RETURNS:
Table 6-11. PGS_IO_Gen_OpenF Returns

Return Description
PGS_S_SUCCESS Successful completion
PGSIO_E_NO_FREE_LUN All logical unit numbers are in use
PGSIO_E_GEN_OPENMODE Illegal open mode was specified
PGSIO_E_GEN_OPEN_OLD Attempt to open with STATUS=OLD failed
PGSIO_E_GEN_OPEN_NEW Attempt to open with STATUS=NEW failed
PGSIO_E_GEN_OPEN_RECL Invalid record length specified
PGSIO_E_GEN_FILE_NOEXIST File not found, cannot create
PGSIO_E_GEN_REFERENCE_FAILURE Can’t do Temporary file reference

EXAMPLE: integer returnstatus
integer file_logical
integer file_access
integer record_length
integer file_handle
integer file_version

 file_version = 3
file_logical = 101
file_access = PGSd_IO_Gen_WSeqFrm

 6-44 333-EMD-001, Rev. 05

 returnstatus = PGS_IO_Gen_OpenF(file_logical, file_access,
 record_length, file_handle,
 file_version)

if (returnstatus .NE. PGS_S_SUCCESS) then

 C goto 1000
end if
 .
 .
 .

1000 <error handling goes here>

NOTES: While all modes of access are supported for this tool, those modes that
allow for writing to a file (i.e., not PGSd_IO_Gen_Read) are intended for
Toolkit access only. The only files that the science software should write
to are product output files (HDF) and Temporary, or Intermediate files.

 In order to ascertain the number of versions currently associated with the
logical identifier in question, make a call to
PGS_PC_Get_NumberOfFiles() first (Toolkit 3 and later.)

 Due to the nature of FORTRAN IO, it is possible to write a file opened for
reading as well as read a file opened for writing. The matching of access
mode to IO statement cannot be enforced by the tool. This is up to the
user.

 Once a file has been opened with this tool, it must be closed with a call to
PGS_IO_Gen_CloseF before being re-opened. Failure to do this will
result in undefined behavior.

 IMPORTANT TOOLKIT 5 NOTES

 The following environment variable MUST be set to assure proper
operation:

 PGS_PC_INFO_FILE path to process control file

 However, the following environment variables are NO LONGER
recognized by the Toolkit as such:

 PGS_PRODUCT_INPUT path to standard input files
PGS_PRODUCT_OUTPUT path to standard output files
PGS_SUPPORT_INPUT path to supporting input file
PGS_SUPPORT_OUTPUT path to supporting output files

 Instead, the default paths, which were defined by these environment
variables in previous Toolkit releases, may now be specified as part of the
Process Control File (PCF). Essentially, each has been replaced by a

 6-45 333-EMD-001, Rev. 05

global path statement for each of the respective subject fields within the
PCF. To define a global path statement, simply create a record that begins
with the ‘!’ symbol defined in the first column, followed by the global
path to be applied to each of the records within that subject field. Only one
such statement can be defined per subject field and it must be appear prior
to any dependent subject entry.

 It is error condition to have an input file specified in the PCF that does not
exist on disk. The behavior of the tool is undefined when attempting to
open such a file for reading.

REQUIREMENTS: PGSTK-0360

 6-46 333-EMD-001, Rev. 05

Close a Generic File, Temporary or Intermediate File (C Version)

NAME: PGS_IO_Gen_Close()

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_Gen_Close(
 PGSt_IO_Gen_FileHandle *file_handle);

FORTRAN: (not applicable)

DESCRIPTION: This tool closes a stream opened by a call to the “C” version of the
Generic I/O Open tools.

INPUTS: fileHandle-file handle returned by PGS_IO_Gen_Open or
 PGS_IO_Gen_Temp_Open.

OUTPUTS: NONE

RETURNS:
Table 6-12. PGS_IO_Gen_Close Returns

Return Description
PGS_S_SUCCESS Success
PGSIO_E_GEN_CLOSE Error closing file

EXAMPLES: PGSt_IO_Gen_FileHandle *handle;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_IO_Gen_Close(handle);
if (returnStatus != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
else
{
 .
 .
 .
}

EXCEPTION:

 6-47 333-EMD-001, Rev. 05

NOTES: Usage of this tool is optional, but failure to close a file could result in loss
of data, destroyed files, or possible intermittent errors in your program.

 As a consequence of calling this tool, any data left unwritten in the output
buffer will be flushed to the output stream; likewise, any data left unread
in the input buffer will be discarded.

!!!!!!!!!! ALERT !!!!!!!!!!!

Never attempt to close a file that has not been initialized, or previously
used in an open call. Failure to heed this warning will result in program
abort on many platforms.

REQUIREMENTS: PGSTK-0360

 6-48 333-EMD-001, Rev. 05

Close a Generic File (FORTRAN Version)

NAME: PGS_IO_Gen_CloseF()

SYNOPSIS:

C: (not applicable)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer pgs_io_gen_closef(file_handle)
integer file_handle

DESCRIPTION: This tool closes a FORTRAN IO unit opened by call to
PGS_IO_Gen_OpenF or PGS_IO_Gen_Temp_OpenF.

INPUTS: file_handle-file handle returned by PGS_IO_Gen_OpenF or
 PGS_IO_Gen_Temp_OpenF

OUTPUTS: NONE

RETURNS:
Table 6-13. PGS_IO_Gen_CloseF

Return Description
PGS_S_SUCCESS Successful completion
PGSIO_E_GEN_CLOSE Attempt to close file failed
PGSIO_E_GEN_ILLEGAL_LUN file_handle LUN was out-of-bounds
PGSIO_W_GEN_UNUSED_LUN file_handle LUN was not in use

EXAMPLES: integer handle
integer returnstatus

 returnstatus = PGS_IO_Gen_CloseF(handle)
if (returnstatus != PGS_S_SUCCESS) goto 1000
.
.
.

100 <error handling goes here>

NOTES: Failure to close a file could result in loss of data, destroyed files, or
possible intermittent errors in your program.

 6-49 333-EMD-001, Rev. 05

 This tool expects the input file_handle to point to a file that was
successfully opened via a call to either the tool PGS_IO_Gen_OpenF or
the tool PGS_IO_Gen_Temp_OpenF. If this is not the case, the result of
calling the tool is undefined.

REQUIREMENTS: PGSTK-0360

 6-50 333-EMD-001, Rev. 05

6.2.1.4 Metadata Tools

This set of tools is designed to manage the metadata that are generated with each EOS product,
i.e., the granule-level metadata. The tools also provide a mechanism for populating the
inventory data base tables with the metadata for each granule. The purpose of these tools is:

• To ensure that the metadata produced conforms to ECS standards in content and format;
and

• To provide access files from within the science algorithms to metadata contained in input
files.

The overall context of metadata in ECS, and further details on the use of the metadata tools are
provided in Appendix J of this document.

The metadata tools in the SDP toolkit library are called from within a PGE to read and write
metadata. The metadata attributes that will be assigned values during processing are identified in
the metadata configuration file (MCF). The MCF is read into memory and toolkit calls are used
to populate values for the attributes. When the metadata population process is complete,
metadata “blocks” are written to product output files as HDF data objects called global attributes
(not to be confused with individual metadata elements which are also called attributes). All
output metadata is in object description language (ODL).

Multiple MCFs may be opened and written to from within a single PGE. The five metadata tools
that are used in conjunction with MCFs must be called in a specific sequence, once for each
MCF. First, each MCF must be initialized with PGS_MET_Init, which also assigns values for
“system” metadata. Values generated within the PGE are assigned to attributes in the MCF using
PGS_MET_SetAttr and/or PGS_MET_SetMultiAttr. To return the value of any metadata
attribute in the MCF that has received a value PGS_MET_GetSetAttr may be used. After all
values have been assigned, PGS_MET_Write is used to write the metadata to the product or,
alternatively for non-HDF products, to a separate ASCII metadata file. Finally,
PGS_MET_Remove frees up memory used by the MCFs . If the HDF file is of type HDF4 user
may still call HDF’s SDstart to open HDF file to write metadata. However, if the HDF file is of
type HDF5 user must call PGS_MET_SDstart to open the file (this function can also be used to
open HDF file of type HDF4). The file opened by PGS_MET_SDstart needs to be closed by a
call to PGS_MET_SDend after writing metadata to it.

Two additional toolkit routines are used to read metadata values from within the PGE. These
may be called independently of any MCF. PGS_MET_GetPCAttr may be used to return the
value of metadata from input files identified to the process control (PC) system.
PGS_MET_GetConfigData may be used to return the value of runtime metadata from the
Process Control File.

The FORTRAN versions of PGS_MET_SetAttr, PGS_MET_SetMultiAttr
PGS_MET_GetConfigData, PGS_MET_GetSetAttr, and PGS_MET_GetPCAttr must include an
underscore and an extra character at the end of the function name to indicate the data type being
handled: _S for string values, _I for integer and unsigned int values, and _D for single or double

 6-51 333-EMD-001, Rev. 05

precision real values. For example, the function PGS_MET_SetAttr actually represents three
different FORTRAN functions:

• PGS_MET_SetAttr_S to set the value of string and datetime attributes

• PGS_MET_SetAttr_I to set integer and unsigned int values; and

• PGS_MET_SetAttr_D to set real or double values

As discussed in greater detail in Appendix J, two separate metadata blocks are handled by the
metadata tools. These are called inventory and archive. Inventory consists of “core” attributes,
i.e. those that are part of the ECS Data Model, which will reside in the ECS inventory tables and
will thus be available to query on in locating granules. Archive metadata refers to metadata that a
data producer wants to be included with the data granule, but need not be searchable by the
system and will therefore not be used to populate the inventory tables. Archive metadata can,
however, be read from HDF input files using toolkit calls.

The inventory and archive blocks are referenced in the toolkit calls by an array, e.g.
mdHandles(n), where n=1 (for C, n=2 for FORTRAN) indicates inventory metadata and n=2 (or
n=3 for FORTRAN) indicates archive metadata. To write an ASCII version of the metadata for
non-HDF files mdHandles(0) (or n=1 for FORTRAN) is used to indicate that all metadata block
are to be written together. It is possible to define other blocks and write them to HDF product
output files or to ASCII metadata output files, but these will not be handled by the system. For
example, if the granule is subsetted using ECS routines, only the inventory and archive blocks
will be copied into the resultant file.

Additional description and extensive examples of the usage of MET tools can be found in the
HDF-EOS Users Guide for the ECS Project, Vol. 1, Section 7 and 8.

A description of each MET tool follows:

 6-52 333-EMD-001, Rev. 05

Initialize a Metadata Configuration File (MCF) into Memory

NAME: PGS_MET_Init()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_Init(
 PGSt_PC_Logical fileId,
 PGSt_MET_all_handles mdHandles)

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_met_init(fileId, mdHandles)

 integer fileId
character* PGS_MET_GROUP_NAME_L
 mdHandles(PGS_MET_NUM_OF_GROUPS)

DESCRIPTION: Initializes MCF file containing metadata.

INPUTS:
Table 6-14. PGS_MET_Init Inputs

Name Description Units Min Max
fileId MCF file id None variable variable

OUTPUTS:
Table 6-15. PGS_MET_Init Outputs

Name Description Units Min Max
mdHandles metadata groups in MCF None N/A N/A

 6-53 333-EMD-001, Rev. 05

RETURNS:
Table 6-16. PGS_MET_Init Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_LOAD_ERR Unable to load <MCF> information. Lower level routines contain

more information
PGSMET_E_GRP_ERR Master groups are not supposed to be enclosed under any other

group or object. The offending group is <name>
PGSMET_E_GRP_NAME_ERR Group name length should not exceed

PGS_MET_GROUP_NAME_L – 5.
PGSMET_E_NO_INVENT_DATA Inventory data section not defined in the MCF
PGSMET_E_DUPLICATE_ERR There is a another object with the same name for object <name>

 Duplicate names are not allowed within master groups
PGSMET_E_NUM)FMCF_ERR Unable to load. The number of MCFs allocated has been exceeded.
PGSMET_E_PCF_VALUE_ERR Metadata objects to be set from values defined in PCF could not be

set. See error returns form the lower level routines. Initialization
takes place nevertheless.

EXAMPLES:

C:

 #include "PGS_MET.h"
#define INVENTORYMETADATA 1
#define MODIS_FILE 10253 /* This value must also be defined in
the PCF
 10253|hdftestfile|/home/asiyyid/pgetest/fortran/|||hdf
 testfile|1 : */

#define ODL_IN_MEMORY 0
int main()
{
PGSt_MET_all_handles handles;
char * fileName = "/home/modis/hdftestfile"; /* the user should
change this accordingly */
int32 hdfRet, sdid;
extern AGGREGATE PGSg_MET_MasterNode;
PGSt_SMF_status ret = PGS_S_SUCCESS;
PGSt_integer fileId = PGSd_MET_MCF_FILE;
PGSt_integer i;
double dval, dval[6];
char* sval;
sval = (char*) malloc(30);
ret= PGS_MET_Init(fileId, handles);
if(ret != PGS_S_SUCCESS)

 6-54 333-EMD-001, Rev. 05

 {
printf("initialization failed\n");
return 0;
 }

PGS_MET_Remove();
printf("SUCCESS\n");
return 0;
}

FORTRAN:
 include "PGS_SMF.f"
 include "PGS_MET_13.f"
 include "PGS_MET.f"
C the file id must also be defined in the PCF as follows
C 10253|hdftestfile|/home/asiyyid/pgetest/fortran/|||hd
C testfile|1
 integer pgs_met_init
 integer MODIS_FILE
 parameter(MODIS_FILE = 10253)
 integer INVENTORYMETADATA
 parameter(INVENTORYMETADATA = 2)
 integer ODL_IN_MEMMORY
 parameter(ODL_IN_MEMMORY = 1)
C the groups have to be defined as 49 characters long.
C The C interface is 50.
C The cfortran.h mallocs an extra 1 byte for the null
C character '\0/', therefore making the actual length of a
C string pass as 50.
 character*PGS_MET_GROUP_NAME_L
 1 mdHandles(PGS_MET_NUM_OF_GROUPS)
 character*50 fileName
 integer result
 integer pgs_met_init
 integer hdfReturn
 double precision dval(1), dval(6)
 char*80 sval(5)
C you must change this file spec in the PCF and the example
C before running this example.
 fileName = "/home/asiyyid/pgetest/fortran/hdftestfile"
 result = pgs_met_init(PGSd_MET_MCF_FILE, groups)
 if(result.NE.PGS_S_SUCCESS) then
 print *, "Initialization error. See Logstatus for details"
 endif

 6-55 333-EMD-001, Rev. 05

 print *, "SUCCESS"
 end

NOTES: The MCF file must be in the format described in Appendix J.

 Effective with the November 1996 SCF Toolkit release, multiple MCFs can now
be initialized by repeated calls to this function.

REQUIREMENTS: PGSTK-0290, PGSTK-0370

 6-56 333-EMD-001, Rev. 05

Assign Values to Metadata Attributes

NAME: PGS_MET_SetAttr()

SYNOPSIS:

C: #include "PGS_MET.h"

PGSt_SMF_status

PGS_MET_SetAttr(
 PGSt_MET_handle mdHandle,
 char *attrNameStr,
 void *attrValue)

FORTRAN: include "PGS_MET_13.f"
 include "PGS_MET.f"
 include "PGS_SMF.h"

 integer function pgs_met_setattr(mdHandle, attrNameStr, attrValue)

 character*(*) mdHandle
character*(*) attrName
'user defined' attrValue

DESCRIPTION: After an MCF file is initialized into memory the user may assign values to
metadata attributes using PGS_MET_SetAttr(). The values can be of
following types and their array counterparts

 PGSt_integer, PGSt_double, PGSt_real, char * (string)

INPUTS:
Table 6-17. PGS_MET_SetAttr Inputs

Name Description Units Min Max
mdHandle metadata group in MCF none N/A N/A
attrNameStr name.class of parameter none N/A N/A
attrValue value of attribute to be inserted none N/A N/A

OUTPUTS: None

 6-57 333-EMD-001, Rev. 05

RETURNS:
Table 6-18. PGS_MET_SetAttr Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_NESTED_OBJECTS Object descriptions enclosing related objects must not be

enclosed themselves by other objects
PGSMET_E_ODL_MEM_ALLOC ODL routine failed to allocate memory
PGSMET_E_PARENT_GROUP Multiple objects must have enclosing groups around them
PGSMET_E_CLASS_PARAMETER Container object must also have class parameter defined
PGSMET_E_METADATA_CHILD Metadata Objects are not allowed to enclose other objects
PGSMET_W_NOT_MULTIPLE Object is not supposed to be multiple therefore resetting the

value. The user may have given a class with the metadata
name

PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.
PGSMET_E_ILLEGAL_TYPE Illegal type definition for metadata <attrName>. It should be a

string
PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter> Either type

or numval not defined
PGSMET_E_ILLEGAL_NUMVAL Illegal NUMVAL definition for metadata <attrName>. It should

be an integer
PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not be

found in <agg node>
PGSMET_E_NEW_ODL_DATA_ERR Unable to create a new odl <parameter>, probably due to lack

of memory
PGSMET_E_INV_DATATYPE Invalid data type definition in MCF for parameter <name>
PGSMET_E_INVALID_LOCATION Invalid location for setting attribute value

EXAMPLES:

C:

/* For setting Inventory Attributes in the MCF */

/* NUMVAL i the MCF = 6 */

 dvals[0] = 10.0;
dvals[1] = 20.0;
dvals[2] = 30.0;
dvals[3] = 40.0;
dvals[4] = 50.0;
dvals[5] = 60.0;
ret = PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "GRingPointLatitude.1", dvals);

 6-58 333-EMD-001, Rev. 05

 /* For setting Product Specific Attributes */

strcpy(informationname,"TestingAttribute1");
ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
"AdditionalAttributeName.1",&informationname);
strcpy(informationname,"testingAttributeValue1");
ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
FORTRAN:

C For setting Inventory Attributes in an HDF file

 dvals(1) = 10.0
 dvals(2) = 20.0
 dvals(3) = 30.0
 dvals(4) = 40.0
 dvals(5) = 50.0
 dvals(6) = 60.0
 ret =
 pgs_met_setattr_d(groups(INVENTORYMETADATA),
 1 “GRingPointLatitude.1", dvals)

C For setting Product Specific Attributes

 informationname = "TestingAttribute1"
 ret = pgs_met_setattr_s(groups(INVENTORYMETADATA),
 1 "AdditionalAttributeName.1",informationname)
 informationname = "testingAttributeValue1"
 ret = pgs_met_setattr_s(groups(INVENTORYMETADATA),
 1 "ParameterValue.1",informationname)

NOTES: 1. Multiplicity:

In TK5, a CLASS statement was introduced so that metadata objects with the
same name could be distinguished from each other in the ODL tree. In TK5.1 this
functionality was further extended to allow a single metadata object in the MCF
to have multiple instances. This means that all the metadata objects within a
master group in the MCF must have unique names. The use of the CLASS field in
the name of a metadata attribute is optional and is needed only when the attribute
in the MCF is within a group having a CLASS statement. See Appendix J for
details and examples.

2. Nested Metadata:

There are certain metadata objects which are always described as a group of
related metadata. To allow such groups to stay together in the MCF and the ODL
tree, nested metadata objects are defined in the MCF using "Container Objects."
in the MCF with related metadata as its child members. The child members are set
individually as before. The container object does not have a value since it defines
a concept and not an entity.

In the case of multiple container objects (e.g. there could be more than one
instances of gring polygons), when a call to set a value of one of the child

 6-59 333-EMD-001, Rev. 05

metadata objects is made, it is the container object which is duplicated with a
different class creating instances of all the child members. It is the users
responsibility to set their values as well with subsequent call. Examples are given
in Appendix J.

3. Array Filling:

TK5 imposed a restriction that metadata objects with values defined as arrays
must be set with all the elements filled. This restriction is now lifted and the user
has the freedom to set 1 to n values for a particular parameter where n is defined
in the NUM_VAL field in the MCF. In this case where the values are being
retrieved, the end of array is marked by:

 INT_MAX for integers
 UINT_MAX for unsigned integers
 DBL_MAX for doubles
 NULL char * (strings)

These values are defined in the limits.h and floats.h. Its analogous to null
terminated strings defined as char[] arrays.

FORTRAN Users:

Use PGSd_MET_INT_MAX, PGSd_MET_DBL_MAX and
PGSd_MET_STR_END respectively.

The user can check for these values to determine the actual number of values
retrieved. In case where the number of values retrieved is equal to n, there is no
end of array marker since user is expected to know n for setting the return buffer.

4. Permissible Data Locations:

PGS_MET_SetAttr can be used to assign values to metadata attributes which
have DATA_LOCATION = “PGE”, “PCF”, or “TK”. Any attribute with
DATA_LOCATION = “DSS”, “DAAC,” or “DP” can not be set by the PGE. An
attempt to do so with PGS_MET_SetAttr will result in an error message of
PGSMET_E_INVALID_LOCATION being generated in the runtime LOG file.

5. Metadata Types:

The tool provides a void interface through which different types of metadata can
be set. The types supported are:

 PGSt_integer
 PGSt_uinteger
 PGSt_double
 string

and their arrays counterparts. PGSt_real has been omitted because of the changes
in TK5.1.

 6-60 333-EMD-001, Rev. 05

It is very important that variable string pointers are used for string manipulations.
This is because void interface is used. For example, the following piece of code
would give an error or unexpected results:
.
.
char a[100];
.
.
strcpy(a, "MODIS");
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", a);
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a);

The first call is wrong because the routine expects char** but cannot force it
because of void interface. The second call is wrong too because of the declaration
of 'a' which is a constant pointer, i.e. it would always point to the same location in
memory of 100 bytes. Only the following construct will work with the routine in
which the string pointer is declared as a variable
char *a = "MODIS"
.
.
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a);

The above discussion is also true for arrays of strings. For example, the following
is not allowed for the same reasons as above
.
.
char a[10][100];
.
.
strcpy(a[0], "MODIS");
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a[0]);

while the following is acceptable:
.
.
char *a[10];
.
.
a[0] = "MODIS";

retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a[0]);

IMPORTANT

The void buffer should always be large enough for the returned values otherwise
routine behavior is uncertain.

REQUIREMENTS: PGSTK-0290 PGSTK-0410 PGSTK-380

 6-61 333-EMD-001, Rev. 05

Assign Mulitple Values to Metadata Attributes

NAME: PGS_MET_SetMultiAttr()

SYNOPSIS:

C: #include "PGS_MET.h"

PGSt_SMF_status

PGS_MET_SetMultiAttr(
 PGSt_MET_handle mdHandle,
 char *attrNameStr,

PGSt_integer num_val,
 void *attrValue)

FORTRAN: include "PGS_MET_13.f"
 include "PGS_MET.f"
 include "PGS_SMF.h"

 integer function pgs_met_setmultiattr(mdHandle, attrNameStr, numofval,
attrValue)

 character*(*) mdHandle
character*(*) attrName
'user defined' attrValue

 integer num_val

DESCRIPTION: After an MCF file is initialized into memory the user may assign multiple
values to metadata attributes whose NUM_VAL is 1 in the MCF file using
PGS_MET_SetMultiAttr(). This function sets the multi-value attribute
and modifies NUM_VAL value to num_val passed to the function. The
attribute values can be of following types and their array counterparts

 PGSt_integer, PGSt_double, PGSt_real, char * (string)

INPUTS:
Table 6-19. PGS_MET_SetMultiAttr Inputs

Name Description Units Min Max
mdHandle metadata group in MCF None N/A N/A
attrNameStr name.class of parameter None N/A N/A
num_val number of values to be set by the user if

NUM_VAL is 1 in the MCF
None 1 N/A

attrValue value of attribute to be inserted None N/A N/A

OUTPUTS: None

 6-62 333-EMD-001, Rev. 05

RETURNS:
Table 6-20. PGS_MET_SetMultiAttr Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_NESTED_OBJECTS Object descriptions enclosing related objects must not be

enclosed themselves by other objects
PGSMET_E_ODL_MEM_ALLOC ODL routine failed to allocate memory
PGSMET_E_PARENT_GROUP Multiple objects must have enclosing groups around them
PGSMET_E_CLASS_PARAMETER Container object must also have class parameter defined
PGSMET_E_METADATA_CHILD Metadata Objects are not allowed to enclose other objects
PGSMET_W_NOT_MULTIPLE Object is not supposed to be multiple therefore resetting the

value. The user may have given a class with the metadata
name

PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.
PGSMET_E_ILLEGAL_TYPE Illegal type definition for metadata <attrName>. It should be a

string
PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter> Either type

or numval not defined
PGSMET_E_ILLEGAL_NUMVAL Illegal NUMVAL definition for metadata <attrName>. It should

be an integer
PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not be

found in <agg node>
PGSMET_E_NEW_ODL_DATA_ERR Unable to create a new odl <parameter>, probably due to lack

of memory
PGSMET_E_INV_DATATYPE Invalid data type definition in MCF for parameter <name>
PGSMET_E_INVALID_LOCATION Invalid location for setting attribute value

EXAMPLES:

C:
char *svals[5];
 PGSt_MET_all_handles handles;
 PGSt_integer num_val;
 char AttrName[256];
 char AttrValString[256];
 char *cptr;

 strcpy (AttrName, "AdditionalAttributeName.1");
 strcpy (AttrValString, "string 1");
 cptr = AttrValString;
 ret = PGS_MET_SetAttr (handles[INVENTORYMETADATA], AttrName, &cptr);

 strcpy (AttrName, "ParameterValue.1");
 svals[0] = (char *) malloc(30);
 svals[1] = (char *) malloc(30);
 svals[2] = (char *) malloc(30);
 svals[3] = (char *) malloc(30);

 6-63 333-EMD-001, Rev. 05

 svals[4] = NULL;
 strcpy(svals[0], "Astring 11");
 strcpy(svals[1], "Astring 22");
 strcpy(svals[2], "Astring 33");
 strcpy(svals[3], "Astring 44");
 num_val = 6;
 ret = PGS_MET_SetMultiAttr(handles[INVENTORYMETADATA], AttrName,
num_val, svals);

FORTRAN:

 IMPLICIT NONE

 INCLUDE 'PGS_SMF.f'
 INCLUDE 'PGS_MET.f'
 include 'PGS_MET_13.f'
 INCLUDE 'PGS_PC.f'

 INCLUDE 'hdf.inc'

 integer PGS_MET_Init
 integer PGS_MET_SetAttr_s
 integer PGS_MET_SetMultiAttr_s
 character*50 svals2(5)
 character*(PGSd_MET_GROUP_NAME_L)
 + mdHandles(PGSd_MET_NUM_OF_GROUPS) ! metadata group in MCF
 character*256 AttrName
 character*256 AttrValString
 integer status
 integer num_val

 integer INVENTORY
 PARAMETER (INVENTORY = 2)
 integer MCF_FILE
 PARAMETER (MCF_FILE = 10250)

 status = PGS_MET_Init (MCF_FILE, mdHandles)
 AttrName = "AdditionalAttributeName.1"
 AttrValString = "string 2"
 status = PGS_MET_SetAttr_s (mdHandles(INVENTORY), AttrName,
 & AttrValString)

 AttrName = "ParameterValue.1"
 svals2(1) = "Astring 11"
 svals2(2) = "Astring 22"
 svals2(3) = "Astring 33"
 svals2(4) = "Astring 44"
 svals2(5) = PGSd_MET_STR_END
 num_val = 6

 status = PGS_MET_SetMultiAttr_s(mdHandles(INVENTORY), AttrName,

 & num_val, svals2)

NOTES: See notes for PGS_MET_SetAttr

REQUIREMENTS: PGSTK-0290 PGSTK-0410 PGSTK-380

 6-64 333-EMD-001, Rev. 05

Accesses Metadata Attributes Already Set in Memory

NAME: PGS_MET_GetSetAttr()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_GetSetAttr(
PGSt_MET_handle mdHandle,
 char* attrNameStr,
 void* attrValue)

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_met_getsetattr(mdHandle, attrNameStr, attrValue)
character* mdHandle
character* attrName
'user defined' attrValue

DESCRIPTION: The MCF is first initialized into memory and some of the parameters are
automatically set and some are set by the user using PGS_MET_SetAttr().
This tool is used to retrieve these values.

INPUTS:
Table 6-21. PGS_MET_GetSetAttr Inputs

Name Description Units Min Max
mdHandle metadata group none N/A N/A
attrName name.class of parameter none N/A N/A

OUTPUTS:
Table 6-22. PGS_MET_GetSetAttr Outputs

Name Description Units Min Max
attrValue value of attribute to be passed back to the

user
none N/A N/A

 6-65 333-EMD-001, Rev. 05

RETURNS:
Table 6-23. PGS_MET_GetSetAttr Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not

 Be found in <agg node>
PGSMET_W_METADATA_NOT_SET The metadata <name> is not yet set
PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter>
 Either NUM_VAL or type is not defined
PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.

EXAMPLES:

C:

/* For accessing Inventory Attributes in an HDF file */

 for(i = 0; i < 6; i++) dvals[i] = 0.0;
 ret = PGS_MET_GetSetAttr(handles[INVENTORYMETADATA],
 "GRingPointLatitude.1", dvals);
 for(i = 0; i < 6; i++) printf("%lf", dvals[i]);
 printf("\n");

/* For accessing Product Specific Attributes in an HDF file */
 strcpy(sval," ");
 ret=PGS_MET_GetSetAttr(handles[INVENTORYMETADATA],
 "AdditionalAttributeName.1",&sval);

 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");
 strcpy(sval," ");
 "ParameterValue.1",&sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");
FORTRAN:

C For accessing Inventory Attributes in an HDF file

 dvals(1) = 0.0
 dvals(2) = 0.0
 dvals(3) = 0.0
 dvals(4) = 0.0
 dvals(5) = 0.0
 dvals(6) = 0.0

 ret = pgs_met_setattr_d(groups[INVENTORYMETADATA],
 1 "GRingPointLatitude.1", dvals)
 print *, dvals(1), dvals(2), dvals(3), dvals(4),

 6-66 333-EMD-001, Rev. 05

 1 dvals(5), dvals(6)

C For accessing Product Specific Attributes in an HDF file

 sval = " "
 ret=pgs_met_setattr_s(groups[INVENTORYMETADATA],
 1 "AdditionalAttributeName.1",sval)
 print *, sval
 sval = " "
 ret=pgs_met_setattr_s(groups[INVENTORYMETADATA],
 1 "ParameterValue.1",sval)
 print *, sval

NOTES: (See notes 1,2,3, and 4 in PGS_MET_SetAttrib()

REQUIREMENTS: PGSTK-0290 PGSTK-380

 6-67 333-EMD-001, Rev. 05

Accesses Metadata Parameters in HDF Products or
Independent ASCII Files

NAME: PGS_MET_GetPCAttr()

SYNOPSIS:
C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_GetPCAttr(
PGSt_PC_Logical fileId,
PGSt_integer version,
 char * hdfAttrName,
 char * parmName,
 void * parmValue)

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_getpcattr(fileId, version, hdfAttrName, parmName,
parmValue)

 character* fileId
integer version
character* hdfAttrName
character* parmName
'user defined' parmValue

DESCRIPTION: Metadata parameters held in HDF attributes or in a separate ASCII file
can be read using this tool

INPUTS:
Table 6-24. PGS_MET_GetPCAttr Inputs

Name Description Units Min Max
fileId product file id none Variable variable
version product version number none 1 variable
hdfAttrName name of HDF attribute containing metadata none N/A N/A
parmName metadata parameter name none N/A N/A

 6-68 333-EMD-001, Rev. 05

OUTPUTS:
Table 6-25. PGS_MET_GetPCAttr Outputs

Name Description Units Min Max
attrValue value of attribute to be passed back to the user none N/A N/A

RETURNS:
Table 6-26. PGS_MET_GetPCAttr Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_PCREAD_ERR "Unable to obtain <filename or attribute filename> from the PC

 table" Most likely that <filename or attribute filename> is not
defined in the PCF

PGSMET_E_FILETOODL_ERR "Unable to convert <filename> into an ODL format" error
 returns from lower level routines should explain the problem

PGSMET_E_AGGREGATE_ERR Unable to create ODL aggregate <aggregate name> It
Definitely means that ODL routine has failed to allocate
enough
 Memory

PGSMET_E_SYS_OPEN_ERR Unable to open pc attribute file Usually if the file does not exist
 at the path given, check the name and path of the file

PGSMET_E_ODLTOVAL_ERR Unable to convert attribute values from the ODL format error
Returns from lower level routines should explain the problem

PGSMET_E_NULL_PARAMETER The requested parameter is a null value
PGSMET_E_NOT_SET The requested parameter is not set

EXAMPLES:
C:
 char grpName[100];

/* For accessing Inventory Attributes in an HDF file */

 for(i = 0; i < 6; i++) dvals[i] = 0.0;
 ret = PGS_MET_GetPCAttr(MODIS_FILE, 1, "coremetadata",
 "GRingPointLatitude.1", dvals);
 for(i = 0; i < 6; i++) printf("%lf", dvals[i]);
 printf("\n");

/* For accessing Product Specific Attributes in an HDF file */

 strcpy(sval," ");
 ret=PGS_MET_GetPCAttr(MODIS_FILE,1,"coremetadata",
 "TestingAttribute1",&sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");

/* For accessing attributes in the ASCII Metadata file */
/* NOTE: For retrieving attribute values from the ASCII metadata file, users

 6-69 333-EMD-001, Rev. 05

have to generate a group name first before calling the function
PGS_MET_GetPCAttr. The procedures are as follows:
1:
 In this case the group name is INVENTORYMETADATA
 sprintf(grpName, "%s%s", PGSd_MET_GROUP_STR, "INVENTORYMETADATA");
2:
 ret = PGS_MET_GetPCAttr(10268, 1, grpName, "REPROCESSINGPLANNED",
 &sval);

*/

 strcpy(sval," ");
 sprintf(grpName, "%s%s", PGSd_MET_GROUP_STR,
 "INVENTORYMETADATA");
 ret = PGS_MET_GetPCAttr(10268, 1, grpName,
 "REPROCESSINGPLANNED", &sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");

/* For LandSat7 Metadata output file */
/* NOTE: For retrieving the attribute from the Landsat7 meta file, users have
to generate a group name first before calling the function PGS_MET_GetPCAttr.
The procedures are as follows:

1:
 In this case the group name is "FORMAT_SUBINTERVAL_METADATA_1"
 sprintf(grpName,"%s%s",PGSd_MET_LSAT_GRP_STR,
 "FORMAT_SUBINTERVAL_METADATA_1");

2:
 ret = PGS_MET_GetPCAttr(10269, 1, grpName,
 "CONTACT_PERIOD_START_TIME", &sval);

*/
 strcpy(sval," ");
 sprintf(grpName,"%s%s",PGSd_MET_LSAT_GRP_STR,
 "FORMAT_SUBINTERVAL_METADATA_1");
 ret = PGS_MET_GetPCAttr(10269, 1, grpName,
 "CONTACT_PERIOD_START_TIME", &sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");

FORTRAN:

 char grpName[100];

C For accessing Inventory Attributes in HDF file

 for(i = 0; i < 6; i++) dvals(i) = 0.0
 ret = pgs_met_getpcattr_d(MODIS_FILE, 1, "coremetadata",
 1 "GRingPointLatitude.1", dvals)
 print *, dval(1), dval(2), dval(3), dval(4), dval(5),
 1 dval(6)

C For accessing Product Specific Attributes in HDF file

 sval = " "
 ret=pgs_met_getpcattr_s(MODIS_FILE, 1, "coremetadata",

 6-70 333-EMD-001, Rev. 05

 1 " TestingAttribute1",&sval)
 print *, sval

C For accessing attributes in ASCII Metadata file

 sval = " "
 ret = pgs_met_getpcattr_s(10268, 1, grpName,
 1 "REPROCESSINGPLANNED", &sval)
 print *, sval

C For Landsat7 Metadata file
 sval = " "
 grpName(1:)=PGSd_MET_LSAT_GRP_STR//
 1 "FORMAT_SUBINTERVAL_METADATA_1"
 ret = pgs_met_getpcattr_s(10269, 1, grpName,
 1 "CONTACT_PERIOD_START_TIME", &sval
 print *, sval

NOTES: See Notes 1,2,3, and 4 in PGS_MET_SetAttr

In the ECS production environment all input files are accompanied by an
ASCII version of the metadata (the .met file) so PGS_MET_GetPCAttr
will always read metadata from the .met file. In the SCF environment if
the data input file is in HDF a .met file need not be present and the
metadata can be read from the file itself. This is an example of how an
HDF input file should be designated in the PCF:
10253|hdfinputfile|/my/product/directory/|||hdfinputfile|1

The file names in the second and sixth fields must be identifal. If the input
file is not in HDF, the metadata will be read from an ASCII file which
must be separately identified in the sixth field of the input product entry of
the PCF, as shown in this example:

10253|inputfile|/my/product/directory/|||inputfile.met|1

 The .met file must have the same name as the product input file, with the
.met extension appended. This file must be placed in the same directory as
the input file.

Effective with the November 1996 SCF Toolkit delivery, the separate
ASCII file can now be in the same format as the output from
PGS_MET_Write().

 In the ECS production environment the ASCII metadata file that
accompanies a data input file delivered by Science Data Server does not
contain archive metadata. For this reason, archive metadata can only be
read from input files that are in HDF. If used to read a value for a
metadata attribute that is contained in an HDF global text attribute named
“archivemetadata” or “productmetadata” PGS_MET_GetPCAttr will
attempt to read the metadata from the HDF file, even though an ASCII

 6-71 333-EMD-001, Rev. 05

.met file is present. In all other cases, PGS_MET_GetPCAttr reads the
ASCII .met file.

The ASCII file may be in one of two formats; either that written out by
the PGS_MET_Write() routine or simple parameter=value construct.
These formats are shown below for a simple case

 OBJECT = SOMEPARAMETER

 NUM_VAL = 1

 VALUE = 200

 END_OBJECT = SOMEPARAMETER

 or

 SOMEPARAMETER = 200

 Note that if a parameter appears twice in the ASCII file (with the same
parameter name and Class extension) only the first occurrence will be
returned.

REQUIREMENTS: PGSTK-0290 PGSTK-0235

 6-72 333-EMD-001, Rev. 05

Accesses Configuration Data in the PC Table

NAME: PGS_MET_GetConfigData()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_GetConfigData(
 char* attrName,
 void* attrValue)

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_met_getconfigdata(attrName, attrValue)
character* attrName
'user defined' attrValue

DESCRIPTION: Certain configuration parameters are held in the PC table as follows

 10220|REMOTEHOST|sandcrab

This tool would retrieve the value "sandcrab" from the PC table given the
name of the parameter "REMOTEHOST". The parameter id 10220 is not
used here. The value string (e.g.. sandcrab) is assumed to be in ODL
format and therefore different types are supported.

INPUTS:
Table 6-27. PGS_MET_GetConfigData Inputs

Name Description Units Min Max
attrName name of parameter in PCF none N/A N/A

OUTPUTS:
Table 6-28. PGS_MET_GetConfigData Outputs

Name Description Units Min Max
attrValue value of attribute to be passed back to the user none N/A N/A

 6-73 333-EMD-001, Rev. 05

RETURNS:
Table 6-29. PGS_MET_GetConfigData Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_AGGREGATE_ERR "Unable to create ODL aggregate <aggregate name>" This

 should never occur unless the process runs out of memory
PGSMET_E_CONFIG_VAL_STR_ERR "Unable to obtain the value of configuration parameter <name>

 from the PCF file". Likelihood is that either the parameter does
 not exist in the PCF or the PCF itself is in error which can be
 tested using pccheck.

PGSMET_E_CONFIG_CONV_ERR "Unable to convert the value of configuration parameter
<name> from the PCF file into an ODL format". Its most likely
 that the string values is not in ODL format.

EXAMPLES:

C:

/* These values must be defined in the PCF otherwise error is returned
*/
 ret = PGS_MET_GetConfigData("REV_NUMBER", &ival);
 strcpy(datetime, "");
 ret = PGS_MET_GetConfigData("LONGNAME", &datetime);
 dval = 0;
 ret = PGS_MET_GetConfigData("CENTRELATITUDE", &dval);
 printf("%d %lf %s\n", ival, dval, datetime);

FORTRAN:

C Retrieve some values from the PCF files. These must be
C defined in the PCF, otherwise the routine would return error
C Note the way _i for integer, _d for double and _s for strings are used
C at the end of the function name. This is necessary because fortran
C compiler would complain about type conflicts if a generic name
C is used
 ret = pgs_met_getconfigdata_i("REV_NUMBER", ival)
 datetime = ""
 ret = pgs_met_getconfigdata_s("LONGNAME", datetime)
 dval = 0
 ret = pgs_met_getconfigdata_d("CENTRELATITUDE", dval)
 if(ret.NE.PGS_S_SUCCESS) then
 print *, "GetConfigData failed.
 endif
 print *, ival, dval, datetime

 6-74 333-EMD-001, Rev. 05

NOTES: See Notes 1, 2, 3, and 4 for PGS_MET_SetAttr().

Although This tool ignores the first field in the PCF file depicting the config id, it
is still important that this field is unique for the PC utility to function correctly
User is responsible for the returned buffers to be large enough to hold the returned
values.

Addendum for TK5.1

This routine now simply retrieves the values from the PCF and does not perform
type and range checking. The user is still required to assign enough space for the
returned values.

REQUIREMENTS: PGSTK-0290 PGSTK-0380

 6-75 333-EMD-001, Rev. 05

Write Metadata and their Values to HDF Attributes and/or
ASCII Output Files

NAME: PGS_MET_Write()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_Write(
 PGSt_MET_handle mdHandle,
 char * hdfAttrName,
 PGSt_integer hdfFileId)

FORTRAN:

 include 'PGS_MET_13.f'
include 'PGS_MET.f'
include 'PGS_SMF.h'

 integer function pgs_met_write(mdHandle, hdfAttrName, hdfFileId)

 character* mdHandle
 character* hdfAttrName
 integer hdfFileId

DESCRIPTION: This is the final tool that PGE uses when all the metadata parameters are
set in memory. The tool checks that all the mandatory parameters are set.

INPUTS:
Table 6-30. PGS_MET_Write Inputs

Name Description Units Min Max
mdHandle metadata group in MCF none N/A N/A
hdfAttrName HDF attribute name to contain metadata none N/A N/A
hdfFileId HDF file ID none N/A N/A

OUTPUTS: None

 6-76 333-EMD-001, Rev. 05

RETURNS:
Table 6-31. PGS_MET_WriteReturns

Return Description
PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_ODL_MEM_ALLOC ODL routine failed to malloc memory space
PGSMET_E_GROUP_NOT_FOUND No group called <name> found in the MCF
PGSMET_E_OPEN_ERR Unable to open <temporary> file with file id <fileId>
PGSMET_E_SD_SETATTR Unable to set the HDF file attribute. Note: HDF4.0r2 and

 Previous versions of HDF have imposed a limit.
PGSMET_E_MALLOC_ERR Unable to allocate memory for the hdf attribute
PGSMET_E_MAND_NOT_SET Some of the mandatory parameters were not set
PGSMET_E_FGDC_ERR Note: HDF attribute is still written out. Unable to convert UTC

 Input date time string to FGDC values
PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.
PGSMET_E_HDFFILENAME_ERR Unable to obtain HDF filename.
PGSMET_E_ASCII_ERR Unable to open MET ASCII file.

EXAMPLES:

C:
/* Write to ASCII metadata file for non-HDF output product */
 ret= PGS_MET_Write(handles[ODL_IN_MEMMORY],NULL, 101);
 if(ret != PGS_S_SUCCESS)
 {
 printf("ASCII Write failed\n");
 }
/* Write to HDF file */
 ret= PGS_MET_Write(handles[INVENTORYMETADATA], "metadata", sdid);
 if(ret != PGS_S_SUCCESS)
 {
 printf("HDFWrite failed\n");
 }

FORTRAN:

C Write to ASCII file for non-HDF output product
 result= pgs_met_write(groups(ODL_IN_MEMORY),dummyStr, 101)
 if(result.NE.PGS_S_SUCCESS.AND.

result.NE.PGSMET_MAND_NOT_SET) then
 1 print *,"ASCII Write failed"
 endif
C Write to HDF file

 6-77 333-EMD-001, Rev. 05

 result= pgs_met_write(groups(INVENTORYMETADATA),
 1 "coremetadata", sdid)
 if(result.NE.PGS_S_SUCCESS.AND. result.NE.PGSMET_MAND_NOT_SET)

then
 1 print *,"ASCII Write failed"
 endif

NOTES: When writing an attribute which has been defined as "UNSIGNED INT", the
value written to the ASCII or HDF file may appear negative. The user should use
the type “unsigned int” or the ECS equivalent (PGSd_uinteger) to interpret the
value correctly. (see Note 4 of PGS_MET_SetAttr in Section 6.2.1.4.)

This routine can be used multiple times to write/attach separate master groups as
local or global HDF attributes. To attach a mastergroup to a local element in an
HDF file, an sds_id must be passed in as an argument, rather than an
sd_id(hdfFileId). !!!NOTE!!! : Attaching metadata to a local element using the
Toolkit is not standard practice for HDF-EOS files and should be avoided.

When writing the inventory metadata (MASTERGROUP =
INVENTORYMETADATA in the MCF, mdHandle = coremetadata in the
function call) to an HDF file, an ASCII version of the metadata is automatically
created in the data product output directory. It is given the same name as the data
product output, with the extension .met, i.e. ProductName.met. If the data
product output is not in HDF, the following lines must be included in the PCF in
order to create this required .met file:

?PRODUCT OUTPUT

100|ProductName|my/output/directory|||1
.
.
.
? USER RUNTIME PARAMETERS

101|ProductMetadataFile|100:1

where the second field is simply a comment.

An ASCII version of the metadata file will be created in the execution directory
with the name ProductName.met. The user needs to call PGS_MET_Write with
mdHandle[0], the HDF attribute name set to NULL and the identifier set to the
logical identifier in the PCF.

2. If MANDATORY parameters are not set, an error
PGSMET_E_MAND_NOT_SET is returned only in a PGE. The value of the
metadata is set to as follows:

 DATA_LOCATION VALUE
 PGE "NOT SET"

 6-78 333-EMD-001, Rev. 05

 PCF "NOT FOUND"
 MCF "NOT SUPPLIED"
 TK “NOT OBTAINED”
 DSS “NOT PROVIDED”
 DAAC “NOTSUPPORTED”
 DP “NOT INCLUDED”

The writing of the hdf header is not affected

NOTE: A warning PGSMET_W_METADATA_NOT_SET is issued if
MANDATORY has the value FALSE in the MCF, and the specific attribute will
not appear in the HDF-EOS attribute or the ASCII file.

3. Only system errors such as memory failure, file openings etc. should be
able to abort the write procedure.

4. NUM_VAL and CLASS fields are written in the HDF header

For metadata of type DATETIME, additional metadata is produced:

CALENDATDATETIME becomes CALENDARDATE and TIMEOFDAY.

RANGEBEGININGDATETIME becomes RANGEBEGININGDATE and
RANGEBEGININGTIME

RANGEENDINGDATETIME becomes RANGEENDINGDATE and
RANGEENDINGTIME

The user no longer has to worry about the size of the MCF exceeding the HDF
limit on attribute sizes. This is now handled internally. The user simply needs to
set coremetadata (or archivemetadata) and if the limit is exceeded,
coremetadata.0, .1, etc. are produced.

REQUIREMENTS: PGSTK-0290, PGSTK-0380, PGSTK-0400, PGSTK-0450, PGSTK-0510

 6-79 333-EMD-001, Rev. 05

Free Memory of MCFs

NAME: PGS_MET_Remove()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_Remove()

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_met_remove()

DESCRIPTION: This routine removes ODL representation of all MCF files and some
internal files used by the MET tools.

INPUTS: None

OUTPUTS: None

RETURNS: None

EXAMPLES:
C:
 result = PGS_MET_Remove();
 printf("SUCCESS\n");
 return 0;
FORTRAN:
 print *, ival, dval, datetime
 result = pgs_met_remove()
 print *, "SUCCESS"
 end

NOTES: This routine must be called by the user before the program terminates.

REQUIREMENTS: None

 6-80 333-EMD-001, Rev. 05

Open HDF File of Type HDF4 or HDF5 for Writing
Metadata

NAME: PGS_MET_SDstart()

SYNOPSIS:

C: #include <PGS_MET.h>

 PGSt_SMF_status
PGS_MET_SDstart(
char *filename,
uintn access_mode,
PGSt_integer *HDFfid)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_MET.f’

 integer function pgs_met_sfstart(filename, access_mode, hdffid)

 character*(*) filename
integer hdffid

DESCRIPTION: This tool opens the HDF files of type HDF4 and/or HDF5 and initializes
the SD inetface.

INPUTS:
Table 6-32. PGS_MET_SDstart Inputs

Name Description Units Min Max
filename HDF file name (with full path) none variable variable
access_mode Access mode for opening HDF files. It can be:

HDF5_ACC_RDONLY, HDF5_ACC_RDRW,
HDF5_ACC_CREATE for HDF5files and
HDF4_ACC_RDONLY, HDF4_ACC_RDWR,
HDF4_ACC_CREATE for HDF4 files

none

OUTPUTS:
Table 6-33. PGS_MET_SDstart Outputs

Name Description Units Min Max
HDFfid SD id of the file opened none N/A N/A

 6-81 333-EMD-001, Rev. 05

RETURNS:
Table 6-34. PGS_MET_SDstart Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_HDF5_FILE_TYPE_E
RROR

Cannot determine whether the file is hdf4, hdf5, or none-hdf type

PGSMET_E_SD_START File <filename> is not HDF type and cannot be opened
PGSMET_E_SD_START Cannot open HDF5 file <filename>
PGSMET_E_SD_START Cannot open HDF4 file <filename>

EXAMPLES:

C:

PGSt_SMF_status retstatus;
PGSt_integer Sdid;
retstatus = PGS_MET_SDstart(“/home/username/myhdf.h5”,

HDF5_ACC_RDWR, &SDid);

if (retstatus != 0)

{

 *** do some error handling ***

:

:

}

FORTRAN:

 implicit none
 integer sdid
 integer status
 status = PGS_MET_SFstart(“/home/username/myhdf.h5”,

 * HDF5_ACC_RDWR, sdid)

 if(status .ne. 0) goto 999

NOTES: None

 6-82 333-EMD-001, Rev. 05

Close HDF file of Type HDF4 or HDF5

NAME: PGS_MET_SDend()

SYNOPSIS:

C: #include <PGS_MET.h>

 PGSt_SMF_status
PGS_MET_SDend(cha PGSt_integer HDFfid)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_MET.f’

 integer function pgs_met_sfend(hdffid)
integer hdffid

DESCRIPTION: This tool closes the HDF files of type HDF4 and/or HDF5 that have been
opened by calling PGS_MET_SDstart.

INPUTS:
Table 6-35. PGS_MET_SDend Outputs

Name Description Units Min Max
HDFfid SD id of the file opened none N/A N/A

OUTPUTS: None

RETURNS:
Table 6-36. PGS_MET_SDend Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_SD_END Cannot close the HDF file with ID <sd id>

 6-83 333-EMD-001, Rev. 05

EXAMPLES:

C:

PGSt_SMF_status retstatus;
PGSt_integer Sdid;
retstatus = PGS_MET_SDend(SDid);

if (retstatus != 0)

{

 *** do some error handling ***

:

:

}

FORTRAN:

 implicit none
 integer sdid
 integer status
 status = PGS_MET_SFend(sdid)

 if(status .ne. 0) goto 999

NOTES: None

6.2.1.5 Data Quality Assurance

The tools in this section will be used to support the analysis of Q/A data output from the
production processes. There is no Toolkit tool to meet this requirement, however, this
requirement is being met by other HDF functionality

REQUIREMENTS: PGSTK-0510

6.2.1.6 Temporary and Intermediate Files

This section contains descriptions of tools that are specific to temporary and intermediate file
I/O. A temporary file is a file that exists only for the duration of a single PGE; it is deleted
following successful PGE termination. An intermediate file exists for a user-defined time after
the PGE terminates.

After you open a temporary or intermediate file, use the native C or FORTRAN I/O routines to
perform I/O.

 6-84 333-EMD-001, Rev. 05

Note that there are no “Temp_Close” tools; use the Gen_Close tools to close files. See “Generic
File I/O Tools” (Section 6.2.1.3).

Special note regarding FORTRAN 90: Tools PGS_IO_Gen_OpenF and
PGS_IO_Gen_Temp_OpenF now have FORTRAN 90 versions. These versions support two
specific usages of the F90 OPEN function that are not supported in ANSI FORTRAN 77; they
do not support all F90 options of OPEN. At Toolkit installation time, you select between F77
and F90, and the appropriate source code file is compiled; the function names are the same in
both versions of FORTRAN. Options and text that apply only to FORTRAN 90 are marked in
this document as ***F90 SPECIFIC***.

IMPORTANT CHANGES FROM TOOLKIT 4

The following environment variables MUST be set to assure proper operation:

PGS_PC_INFO_FILE path to process control file

However, the following environment variables are NO LONGER recognized by the Toolkit:

PGS_TEMPORARY_IO path to temporary files
PGS_INTERMEDIATE_INPUT path to intermediate input files
PGS_INTERMEDIATE_OUTPUT path to intermediate output files

Instead, the default paths, which were defined by these environment variables in previous
Toolkit releases, may now be specified as part of the Process Control File (PCF). Essentially,
each has been replaced by a global path statement for each of the respective subject fields within
the PCF. To define a global path statement, simply create a record that begins with the ‘!’
symbol defined in the first column, followed by the global path to be applied to each of the
records within that subject field. Only one such statement can be defined per subject field and it
must appear prior to any dependent subject entry.

The status condition PGSIO_E_GEN_BAD_ENVIRONMENT now indicates an error status on
the global path statement as defined in the PCF, and NOT on an environment variable. However,
as with previous releases, the status message associated with this condition may reference the
above “tokens,” but this is only to indicate which of the global path statements is problematic.

“The environment variable PGS_HOST_PATH, formerly used to direct the Toolkit to the
location of the internet protocol address for the local host, has been replaced by PDPS
functionality which can perform this function in more effective manner. For this reason, the use
of this environment variable is no longer supported. FAILURE TO HEED THIS WARNING
MAY RESULT IN UNPREDICTABLE RESULTS FOR THE PGE. To properly emulate the
manner in which the PDPS system provides this information to the Toolkit, continue to use the
runtime parameter PGSd_IO_Gen_HostAddress to advertise the IP address of the local host.”

 6-85 333-EMD-001, Rev. 05

Open a Temporary/Intermediate File (C Version)

NAME: PGS_IO_Gen_Temp_Open()

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_Gen_Temp_Open(
 PGSt_IO_Gen_Duration file_duration,
 PGSt_PC_Logical file_logical,
 PGSt_IO_Gen_AccessType file_access,
 PGSt_IO_Gen_FileHandle** file_handle);

FORTRAN: (not applicable)

DESCRIPTION: This routine lets the user create and open Temporary and Intermediate
files with a variety of access modes. The returned argument
PGSt_IO_Gen_FileHandle is directly compatible with the standard “C”
library stream I/O manipulation routines.

INPUTS: file_duration:
 PGSd_IO_Gen_Endurance // Creates Intermediate File //
 PGSd_IO_Gen_NoEndurance // Creates Temporary File //

 file_logical-User defined logical file identifier

 file_access-type of access granted to opened file:

Table 6-37. File Access Type
Toolkit C Description

PGSd_IO_Gen_Read “r” Open file for reading
PGSd_IO_Gen_Write “w” Open file for writing, truncating existing file to 0 length, or creating a

new file
PGSd_IO_Gen_Append “a” Open file for writing, appending to the end of existing file, or

creating file
PGSd_IO_Gen_Update “r+” Open file for reading and writing
PGSd_IO_Gen_Append
Update

“a+” Open file for reading and writing, to the end of existing file, or
creating a new file; whole file can be read, but writing only
appended

OUTPUTS: file_handle-used to manipulate files with other “C” library stream I/O
routines

 6-86 333-EMD-001, Rev. 05

RETURNS:
Table 6-38. PGS_IO_Gen_Temp_Open Returns

Return Description
PGS_S_SUCCESS Success
PGSIO_W_GEN_ACCESS_MODIFIED Illegal attempt to open existing file for access mode

PGSd_IO_Gen_Write or PGSd_IO_Gen_Trunc; Access mode
reset to PGSd_IO_Gen_AppendUpdate

PGSIO_W_GEN_NEW_FILE File expected, but was missing; new file created
PGSIO_W_GEN_DURATION_NOMOD Attempt to alter existing intermediate duration attribute ignored
PGS_E_UNIX UNIX system error
PGSIO_E_GEN_OPENMODE Invalid access mode
PGSIO_E_GEN_REFERENCE_FAILURE Can not find physical file name with logical ID in

$PGS_PC_INFO_FILE
PGSIO_E_GEN_BAD_FILE_DURATION Invalid file duration
PGSIO_E_GEN_FILE_NOEXIST No entry for logical ID $PGS_PC_INFO_FILE
PGSIO_E_GEN_CREATE_FAILURE Error creating new file entry in $PGS_PC_INFO_FILE
PGSIO_E_GEN_NO_TEMP_NAME Failed to create temporary filename
PGSIO_E_GEN_BAD_ENVIRONMENT Bad environment detected for I/O path ...

 “Existing file” means that an entry for the file exists in
$PGS_PC_INFO_FILE.

 (NOTE: the above are short descriptions only; full text of messages
appears in files $PGSMSG/*.t . Descriptions may change in future
releases depending on external ECS design.)

EXAMPLE: // This example illustrates how to create an Intermediate
 File //

 PGSt_SMF_status returnStatus;
PGSt_PC_Logical logical;
PGSt_IO_Gen_FileHandle *handle;

 #define INTER_1B 101

 returnStatus =
PGS_IO_Gen_Temp_Open(PGSd_IO_Gen_Endurance,INTER_1B,
 PGSd_IO_Gen_Write,&handle);
if (returnStatus != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
 .
 .
 .
EXCEPTION:

 6-87 333-EMD-001, Rev. 05

NOTES: This function will support most POSIX modes of fopen; the only
exception being truncate mode (w+).

 Logical identifiers used for files may NOT be duplicated.

 Existing files will NOT be overwritten by calling this function in mode
PGSd_IO_Gen_Write. Instead, they will be opened in
PGSd_IO_Gen_AppendUpdate mode; a warning will be issued signifying
that this is the case. Warnings will also be issued in the event that a non-
existent file is opened in modes other than explicit write (i.e.,
PGSd_IO_Gen_Append, or PGSd_IO_Gen_AppendUpdate).

 By using this tool, the user understands that a Temporary file may only
exist for the duration of a PGE. Whether or not the user deletes this
Temporary file prior to PGE termination, it will be purged by the Science
Data Processing Segment (SDPS) system during normal cleanup
operations. If the user requires a more static instance of a file, one that will
exist beyond normal PGE termination, that user may elect to create an
Intermediate file instead by specifying some persistence value (currently,
PGSd_IO_Gen_Endurance is the only value recognized); note that this
value is only valid for the initial creation of a file and will not be applied
to subsequent accesses of the same file.

 The following table gives proper use of the file_duration input variable:

Table 6-39. Proper Use of Persistence Values
File Type & Access Duration Factors

TEMPORARY
Creation PGSd_IO_Gen_NoEndurance
Repeated Access NULL

INTERMEDIATE
Creation PGSd_IO_Gen_Endurance
Repeated Access NULL

 FILE CHARACTERISTICS

 All files created by this function have the following form:

 [label][global-network-IP-address][process-id][date][time]

 where:

 label : SDP Toolkit Process Control -> pc

 global-network-IP-address: complete IP address iii.iii.iii.iii -> iiiiiiiiiiii

 (0's padded to maintain triplet groupings)

 6-88 333-EMD-001, Rev. 05

 process-id : process identifier of current executable -> pppppp

 date : days from beginning of year & the year -> dddyy

 time : time from midnight local time -> hhmmss

Table 6-40. Temporary File Name Definition
Field Description Format

label SDP Toolkit Process Control “pc”

production-run-id numeric identifier from 1 to 8 places rrrrrrrr

local-network-IP-address local portion of Internet protocol (IP) address
uuu.vvv.ww.xx

vvvwwxx

process-id UNIX identifier for current process pppppp

date # days from beginning of year, and the year dddyy

time time from midnight local time hhmmss

Reference names returned by this function have the following form:

 [label][global-network-IP-address][process-id][date][time]
 where:
 label : SDP Toolkit Process Control -> pc
 global-network-IP-address: complete IP address iii.iii.iii.iii -> iiiiiiiiiiii
 (0's padded to maintain triplet groupings)
 process-id : process identifier of current executable -> pppppp
 date : days from beginning of year & the year -> dddyy
 time : time from midnight local time -> hhmmss
 or 'pciiiiiiiiiiiippppppdddddtttttt'

 ex. pc19811819201701028000395104034
 pc 198118192017 010280 00395 104034
 | | | | |
 (pc) label____________________| | | | |
 (i) full-network-IP-address ________| | | |
 (p) process-id___________________________________| | |
 (d) date__| |
 (t) time__|

 6-89 333-EMD-001, Rev. 05

All temporary and intermediate files generated by this tool are uniquewithin the global ECS
community. Also, all file names are NOW exactly 31 characters in length; this should help with
the diagnosis of suspect temporary files (i.e., check the length first).

NOTE Users should NOT put entries in the TEMP or INTERMEDIATE
OUTPUT sections. The Toolkit will do this.

The behavior of the Toolkit routine PGS_IO_Gen_Temp_Open() of not
allowing file truncations was part of the original design (this is a "feature"
not a bug). I believe the idea was that NO data should be destroyed (not
even intermediate/temporary data). The actual solution for truncation (to
fit the original design) is to delete the temporary files a routine uses when
it exits the routine. This is done with the Toolkit call
PGS_IO_Gen_Temp_Delete(). This will allow the reuse of the same
logical ID to create a temporary file each time the routine is called. The
general usage is: invoke PGS_IO_Gen_Temp_Open() to open the
temporay file do processing making use of temporary file close the
temporary file using PGS_IO_Gen_Close() delete the temporary file using
PGS_IO_Gen_Temp_Delete() repeat as necessary

REQUIREMENTS: PGSTK-0530, PGSTK-0531

 6-90 333-EMD-001, Rev. 05

Open a Temporary/Intermediate File (FORTRAN Version)

NAME: PGS_IO_Gen_Temp_OpenF()

SYNOPSIS:

C: (not applicable)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function pgs_io_gen_temp_openf(file_duration, file_logical,
 file_access, record_length, file_handle)
integer file_duration
integer file_logical
integer file_access
integer record_length
integer file_handle

DESCRIPTION: Upon a successful call, this function will return a logical unit number for
use with FORTRAN READ and WRITE statements. This is returned to
the user via the parameter file_handle. The user provides the logical file
identifier that internally gets mapped to the associated physical file. The
user also provides the file duration parameter, to specify whether the file
being opened is to be temporary or intermediate.

INPUTS: file_duration-specifies how long file will last:

Table 6-41. File Duration
PGS-defined value Description

PGSd_IO_Gen_Endurance intermediate file
PGSd_IO_Gen_NoEndurance temporary file

 file_logical-User defined logical file identifier

file_access-type of access granted to opened file:

 6-91 333-EMD-001, Rev. 05

Table 6-42. File Access Type

PGS FORTRAN Access Mode

Rd/Wr/Update/Append
FORTRAN 77/90

‘access=’
FORTRAN 77/90

‘form=’

PGSd_IO_Gen_RseqFrm Read Sequential Formatted
PGSd_IO_Gen_RseqUnf Read Sequential Unformatted
PGSd_IO_Gen_RdirFrm Read Direct Formatted
PGSd_IO_Gen_RdirUnf Read Direct Unformatted

PGSd_IO_Gen_WseqFrm Write Sequential Formatted
PGSd_IO_Gen_WseqUnf Write Sequential Unformatted
PGSd_IO_Gen_WdirFrm Write Direct Formatted
PGSd_IO_Gen_WdirUnf Write Direct Unformatted

PGSd_IO_Gen_UseqFrm Update Sequential Formatted
PGSd_IO_Gen_UseqUnf Update Sequential Unformatted
PGSd_IO_Gen_UdirFrm Update Direct Formatted
PGSd_IO_Gen_UdirUnf Update Direct Unformatted
F90 SPECIFIC
PGSd_IO_Gen_AseqFrm Append Sequential Formatted
PGSd_IO_Gen_AseqUnf Append Sequential Unformatted

 record_length-record length for direct access IO:
 mandatory for direct access (minimum value = 1)
 ignored otherwise

 F90 SPECIFIC must be greater than or equal to 0 for sequential
access; if 0, file is opened with default record length

OUTPUTS: file_handle-used to manipulate files with READ and WRITE

RETURNS:
Table 6-43. PGS_IO_Gen_Temp_OpenF Returns

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_NO_FREE_LUN All logical unit numbers are in use
PGSIO_W_GEN_ACCESS_MODIFIED The access mode has been modified
PGSIO_E_GEN_OPENMODE Illegal open mode was specified
PGSIO_E_GEN_OPEN_OLD Attempt to open with STATUS=OLD failed
PGSIO_E_GEN_OPEN_NEW Attempt to open with STATUS=NEW failed
PGSIO_E_GEN_OPEN_RECL Invalid record length specified
PGSIO_W_GEN_OLD_FILE File exists: changing access to update
PGSIO_W_GEN_NEW_FILE File not found, created new one
PGSIO_W_GEN_DURATION_NOMOD Illegal attempt to modify file duration
PGSIO_E_GEN_REFERENCE_FAILURE Can’t do Temporary file reference
PGSIO_E_GEN_BAD_FILE_DURATION Illegal file duration value
PGSIO_E_GEN_FILE_NOEXIST File not found, cannot create
PGSIO_E_GEN_CREATE_FAILURE Unable to create new file
PGSIO_E_GEN_NO_TEMP_NAME New name could not be generated

 6-92 333-EMD-001, Rev. 05

EXAMPLE: integer returnstatus
integer file_duration
integer file_logical
integer file_access
integer record_length
integer file_handle

 file_duration = PGSd_IO_Gen_NoEndurance
file_logical = 101
file_access = PGSd_IO_Gen_WDirUnf
record_length = 1

 returnstatus = PGS_IO_Gen_Temp_OpenF(file_duration,
 file_logical,
 file_access,
 record_length,
 file_handle)

if (returnstatus .NE. PGS_S_SUCCESS) then

 C goto 1000
endif
.
.
.

100 <error handling goes here>

NOTES: Logical identifiers used for Temporary and Intermediate files may NOT
be duplicated. Existing files will NOT be overwritten by calling this
function in any of the write modes. Instead, they will be opened in the
corresponding update mode; a warning will be issued signifying that this
is the case. Warnings will also be issued in the event that a nonexistent file
is opened in modes other than explicit write.

 By using this tool, the user understands that a Temporary file may only
exist for the duration of a PGE. Whether or not the user deletes this file
prior to PGE termination, it will be purged by the PGS system during
normal cleanup operations. If the user requires a more static instance of a
file, one that will exist beyond normal PGE termination, that user may
elect to create an Intermediate file instead by specifying some persistence
value (currently, PGSd_IO_Gen_Endurance is the only value recognized);
note that this value is only valid for the initial creation of a file and will
not be applied to subsequent accesses of the same file.

 In order to insure that generated temporary file names are unique for the
same host, a delay factor of 1 millisecond is imposed during the name
creation process.

 6-93 333-EMD-001, Rev. 05

 Due to the nature of FORTRAN IO, it is possible to write a file opened for
reading as well as read a file opened for writing. The matching of access
mode to IO statement cannot be enforced by the tool. This is up to the
user.

 Once a file has been opened with this tool, it must be closed with a call to
PGS_IO_Gen_CloseF before being re-opened. Failure to do this will
result in undefined behavior.

REQUIREMENTS: PGSTK-0530, PGSTK-0531

 6-94 333-EMD-001, Rev. 05

Delete a Temporary File

NAME: PGS_IO_Gen_Temp_Delete()

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_Gen_Temp_Delete(
 PGSt_PC_Logical file_logical);

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_IO_1.f’

 integer pgs_io_gen_temp_delete(
 integer file_logical)

DESCRIPTION: Upon a successful call, this function will “effectively” delete the
Temporary file currently referenced by the specified logical identifier.
(See NOTES.) Future references to this logical identifier will no longer
provide access to a file until such time as a new temporary file is created
with the same logical identifier.

INPUTS: file_logical-User defined logical file identifier

OUTPUTS: None

RETURNS: PGS_S_SUCCESS
PGSIO_E_GEN_REFERENCE_FAILURE
PGSIO_E_GEN_FILE_NODEL
PGSIO_W_GEN_FILE_NOT_FOUND

EXAMPLE: PGSt_SMF_status ret_val;
PGSt_PC_Logical logical;

 #define INTER_1B 101

 ret_val = PGS_IO_Gen_Temp_Delete(INTER_1B);
if (ret_val != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
 .
 .
 .
EXCEPTION:

 6-95 333-EMD-001, Rev. 05

NOTES: The actual deletion of Temporary files is not carried-out until after the
completion of the PGE run. Instead, these files are marked as deleted
through the Process Control mechanism. This allows for the preservation
of all Temporary files generated during a PGE run, to facilitate error
tracking/debugging following a failed run of a PGE. This in no way
prevents the creation of a new temporary file using the same logical
identifier as one previously deleted.

 Unlike all other IO_Gen tools, this function has a FORTRAN binding
to C. There is no separate FORTRAN version.

 Logical identifiers used for Temporary and Intermediate files may NOT
be duplicated.

 By using this tool, the user understands that a truly Temporary file may
only exist for the duration of a PGE. Whether or not the user deletes this
file prior to PGE termination, it will be purged by the Science Data
Processing System (SDPS) system during normal cleanup operations.

REQUIREMENTS: PGSTK-0520

 6-96 333-EMD-001, Rev. 05

6.2.2 Error/Status Reporting (SMF Tools)

To detect and report an error and status conditions in a consistent manner across the ECS,
standardized status messages and status codes must first be established. The method used to
institute these message/code pairs is by way of the ‘smfcompile’ utility. But first, users will need
to create Status Message Files (SMFs) to contain their custom status messages and
corresponding status identifiers. These identifiers take the form of user defined mnemonics that
visually convey the essence of the status message. The user will make direct use of these
mnemonics in their software when testing for status conditions and when interfacing with the
SMF Toolkit functions. Once an SMF is completed, the smfcompile utility is run in order to bind
the status messages and mnemonics with integral status codes. This process facilitates the
runtime access of all status messages and provides for the referencing of status mnemonics
within the user’s code.

The status codes generated by the ‘smfcompile’ utility are guaranteed to be unique across the
entire SDPS system to ensure that there will be no ambiguous status conditions, in the event that
code from different Science Computing Facilities (SCFs) is merged into a single executable
and/or PGE. This uniqueness is possible because “seed” values, which are different for every
SMF, are used in the generation of the status codes. Typically, many SMF files will be created in
the course of software development; therefore many seed numbers will be required. However, it
is important to note that valid seed numbers can only be obtained from the Toolkit development
team (pgstlkit@eos.hitc.com). Any attempt to produce SMFs from “home-grown” seed values
may result in the SMFs being unusable at integration & test time.

The SDP Toolkit routines actually contain their own collection of status codes and associated
status messages for describing the state of each Toolkit function. Users of the Toolkit functions
should examine the return values of each tool before performing any other action. To inform a
calling unit (user’s software) about the exit state of a called Toolkit routine, each Toolkit
function sets a status message and assigns a status code to the return value. On the basis of its
interpretation of this return value, the calling unit may elect to perform some error handling. As
part of this procedure, the user should either propagate the existing status code up through their
calling hierarchy, or set a status code and message to represent the outcome of any local error
handling attempt.

Upon detection of an error state, users are advised to report on the existing error prior to
performing an error handling procedure. The content of these reports might include the
following: a user-defined message string to convey the nature of the status condition, a user-
defined action string to indicate the next operation to be performed in response to the status
condition, and a system defined string that uniquely identifies the environment in which the
status condition occurred. However, this is merely a suggestion; the user is free to define the
content of the status reports to satisfy their own requirements. The method for reporting this
information will involve the generation of a report from the information just described and the
subsequent transmission of that report to the appropriate destination(s).

Once software development has been completed, all the Status Message Files (SMFs) created to
support that development will be delivered to the DAAC along with the developed PGE(s). The

 6-97 333-EMD-001, Rev. 05

Toolkit SMFs will be delivered to the DAACs along with the Toolkit library, just as they were
delivered to the SCFs.

The tools provided here allow for the propagation of status information within a PGE executable
to facilitate a user’s error handling process. They also provide the means to communicate status
and error information to various monitoring authorities and event logs. Additionally, there is a
tool that enables the user to specify, a priori, the action to be taken in the wake of a fatal
arithmetic event. This mechanism will allow the user to take their own corrective measures to
control an event that is terminal by default. Note that all other event conditions fall under the
purview of system processing and are thereby controlled by the governing SDPS software.

Several new features have been incorporated into these tools for Toolkit 5 in order to improve
their efficiency. One of those features allows for the buffering of individual status messages up
to some user defined runtime limit. This should greatly reduce the amount of I/O required to
access these messages. As a process proceeds to completion, new status messages are buffered as
older, less used status messages become unbuffered. The goal here is to only access status
messages from their runtime file when they are being referenced for the first time. The actual
observed improvement will depend on the degree to which a process’ status messages are
localized (i.e., A particular status message should ideally only be referenced within a short body
of code.) and the buffer size, which is set by the user. Another feature reduces the number of
replicated status messages that can appear in the status log file. This is accomplished by
“compressing” duplicate messages into a count of such messages. This feature should
significantly reduce the size of the status log file and contribute to its general readability.

Please refer to Appendix B for guidance on the creation of Status Message Files and for
examples of SMFs and explicit SMF Toolkit usage.

6.2.2.1 Log File Output Control

Several new features have been added to the Toolkit to allow greater control of message logging.
The behavior of these features is controlled via entries in the Process Control File (PCF). Note
that the use of some or all of these features may be strictly controlled at the DAACs.

6.2.2.1.1 Logging Control

PCF entry:
10114|Logging Control; 0=disable logging, 1=enable logging|1

This may be used to disable logging altogether. If logging is disabled NO message will output to
any log files (although a small header will still be written to the log files indicating that for this
PGE logging has been disabled). The default state is for logging to be enabled.

6.2.2.1.2 Trace Control

PCF entry:
10115|Trace Control; 0=no trace, 1=error trace, 2=full trace|0

 6-98 333-EMD-001, Rev. 05

This may be used to specify the trace level for message logging. Tracing is a feature made
possible by the addition of two new SMF tools: PGS_SMF_Begin and PGS_SMF_End (see the
respective entries in 6.2.2.2 Status Reporting Tools). Users may include these tools at the
beginning and ending of their functions (respectively) to signal to the SMF system when each
user defined function is entered and exited. Three levels of tracing are possible:

No Tracing

This is the default state. No information concerning the entering or exiting of functions is
recorded to the log files. No information concerning the path of a function call is recorded to the
log files.

Example Log Entry:
func4():PGSTD_W_PRED_LEAPS:27652
predicted value of TAI-UTC used (actual value unavailable)

Error Tracing

If error tracing is enabled, information concerning the path of a function call is recorded to the
log files any time a status message is logged to a log file. This is useful in determining where in
a chain of function calls an error occurred. No information concerning the entering or exiting of
functions is recorded in this state.

Example Log Entry:
main():
 func1():
 func2():
 func3():
 func4():PGSTD_W_PRED_LEAPS:27652
 predicted value of TAI-UTC used (actual value unavailable)

Full Tracing

If full tracing is enabled, a message will be written to the log files each time a function is entered
and exited (only those user functions with the PGS_SMF_Begin/End calls, see above). Indenting
will also be done to show the path of each function call.

Example Log Entry:

PGS_SMF_Begin: main()

 PGS_SMF_Begin: func1()

 PGS_SMF_Begin: func2()

 PGS_SMF_Begin: func3()

 PGS_SMF_Begin: func4()

 func4():PGSTD_W_PRED_LEAPS:27652
 predicted value of TAI-UTC used (actual value unavailable)

 6-99 333-EMD-001, Rev. 05

 PGS_SMF_End: func4()

PGS_SMF_End: func3()

PGS_SMF_End: func2()

PGS_SMF_End: func1()

PGS_SMF_End: main()

6.2.2.1.3 Process ID Logging

PCF entry:
10116|Process ID logging; 0=don’t log PID, 1=log PID|0

This may be used to enable the tagging of log file entries with the process ID of the process from
which the entry came. This is useful for PGEs that run concurrent processes which will all be
writing to a single log file simultaneously. If process ID logging is enabled, each log entry will
be tagged with the process ID of the process making the entry. This can facilitate in post-
processing a log file.

Example Log Entry:
func4():PGSTD_W_PRED_LEAPS:27652 (PID=2710)
predicted value of TAI-UTC used (actual value unavailable)

6.2.2.1.4 Status Level Control

PCF entry:
10117|Disabled status level list (e.g., W S F)|<status level list>

This may be used to disable the logging of status codes of specific severity levels. A list of levels
to be disabled should be substituted for <status level list> (e.g.: N M U). No message of a status
level indicated in the list will be recorded to any log file (see Appendix B for details on status
message levels). The default state is to enable logging for all status levels.

6.2.2.1.5 Status Message Seed Control

PCF entry:
10118|Disabled seed list|<status code seed list>

This may be used to disable the logging of status codes generated from specific seed values. A
list of seed values, the status codes derived from which should be disabled, should be substituted
for <status code seed list> (e.g.: 3 5). No message derived from a seed value indicated in the list
will be recorded to any log file (see Appendix B for details on status message seed values). The
default state is to enable logging for all seed values.

6.2.2.1.6 Individual Status Code Control

PCF entry:
10119|Disabled status code list|<status code list>

 6-100 333-EMD-001, Rev. 05

This may be used to disable the logging of specific status codes. A list of status code mnemonics
and/or numeric status codes should be substituted for <status code list> (e.g.:
PGSTD_M_ASCII_TIME_FMT_B 678954). Note that only Toolkit status codes can be
disabled by using mnemonics. To disable a user generated status code a numeric status code
must be used. No messages whose status codes or mnemonics are included in the list will be
recorded to any log file. The default state is to enable logging for all status codes.

6.2.2.1.7 Generating Runtime E-Mail Messages

A PGE may be configured to automatically generate and send e-mail message during runtime
when specific user defined status codes are logged. This is done by assigning an e-mail action to
a given user defined status code.

An e-mail action is an SMF code with the special status level of “C” and a mnemonic that begins
with the characters “PGSEMAIL” (the rest of the mnemonic may contain any other valid
mnemonic characters), for example:

PGS_C_PGSEMAIL_SEND_EMAIL
ASTER_C_PGSEMAIL_ALERT
MODIS_C_PGSEMAIL_ERROR

An e-mail message will be generated anytime a user defined status code with an associated e-
mail action is logged via the SMF logging routines. The contents (body) of these messages will
be the text (message) associated with the user defined status code. The subject of these
messages will be the mnemonic associated with the user defined status code. The list of
recipients is defined in the e-mail action definition.

Example:
In a user defined status message file the following status code mnemonic label and e-mail action
mnemonic label have been defined (the e-mail action is associated with the status code via the
“::” syntax):

MODIS_E_PGE_INIT_FAILED The PGE failed to initialize.
 ::MODIS_C_PGSEMAIL_NOTIFY
MODIS_C_PGSEMAIL_NOTIFY john@modis.org, sue@modis.org

The following lines appear in a C source code file:

 returnStatus = initializePGE();
 if (returnStatus == MODIS_E_PGE_INIT_FAILED)
 {
 PGS_SMF_SetStaticMsg(returnStatus, “main()”);
 exit(1);
 }

At runtime, if the returned status code from the function initializePGE() has the value defined by
MODIS_E_PGE_INIT_FAILED, this status is logged via the SMF function

 6-101 333-EMD-001, Rev. 05

PGS_SMF_SetStaticMsg(), and because this status code has an e-mail action associated with it,
an e-mail message will be generated.

The e-mail message will be sent to: sue@modis.org and john@modis.org
The subject field of the e-mail message will be: MODIS_E_PGE_INIT_FAILED
The text of the e-mail message will be: The PGE failed to initialize.

Note:
This functionality will be disabled at the DAACs.

 6-102 333-EMD-001, Rev. 05

6.2.2.2 Status Reporting Tools

Get Toolkit Version

NAME: PGS_SMF_GetToolkitVersion()
SYNOPSIS:
C: #include <PGS_SMF.h>

void
PGS_SMF_GetToolkitVersion(
 char version[21]);

FORTRAN: include ‘PGS_SMF.f’
 integer function pgs_smf_gettoolkitversion(

 character*20 version)
DESCRIPTION: This function returns a string describing the current version of the Toolkit.
INPUTS: None
OUTPUTS: version - character string describing the current version of the Toolkit
RETURNS: None
EXAMPLES:
C: char version[21];

PGS_SMF_GetToolkitVersion(version);
FORTRAN: character*20

call pgs_smf_gettoolkitversion(version)
NOTES: User must allocate enough memory to hold the Toolkit version string.This

function does not allocate any memory for the user.

REQUIREMENTS:

 6-103 333-EMD-001, Rev. 05

Set UNIX Status Message

NAME: PGS_SMF_SetUNIXMsg()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_SetUNIXMsg(
 PGSt_integer unix_errcode,
 char *msg,
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_setunixmsg(unix_errcode,msg,funcname)
 integer unix_errcode
 character*240 msg
 character*32 funcname

DESCRIPTION: This tool provides the means to retain UNIX error messages for later
retrieval. Additionally, the user has the flexibility to append a user defined
message to a UNIX message for further clarity.

INPUTS: unix_errcode-the error code set by C library; UNIX system calls; and
 POSIX FORTRAN calls, i.e., the value stored in C ‘errno’ and
 Fortune ‘IERROR’

 msg-user defined status message string

 funcname-function where the status condition occurred

OUTPUTS: None

RETURNS:
Table 6-44. PGS_SMF_SetUNIXMsg Returns
Return Description

PGS_S_SUCCESS Success
PGSSMF_E_LOGFILE Error opening status, report or user files
PGSSMF_E_UNDEFINED_UNIXERRNO Undefined UNIX error
PGSSMF_E_MSG_TOOLONG Message length exceeded

 6-104 333-EMD-001, Rev. 05

EXAMPLES:

C: This example uses the ‘popen()’ C library routine merely to illustrate how
the SMF tool PGS_SMF_SetUNIXMsg() might be used to preserve the
UNIX error condition. Note that ‘popen()’ is not part of the POSIX
standard and therefore should not be used within the science software.

 PGSt_SMF_status Get_Listing()
{
 FILE *stream;
 char buffer[101];
 char directoryEntry[101];
 PGSt_SMF_status returnStatus = PGS_S_SUCCESS;

 if (stream = popen(“ls”,”r”) != NULL)
 {
 while (fgets(buffer,100,stream) != NULL)
 {
 scanf(buffer,”%s”,directoryEntry);
 }
 }
 else
 {
 PGS_SMF_SetUNIXMsg(errno,NULL,”Get_Listing()”);
 pclose(stream);
 returnStatus = PGS_E_UNIX;
 }
}

FORTRAN: implicit none

 integer pgs_smf_setunixmsg
character*1 chr
integer ierror

 PXFFGETC(IPXFCONST(“STDIN_UNIT”),chr,ierror)
IF (ierror .NE. 0) THEN
 pgs_smf_Setunixmsg(ierror,’PXFFGETC() error
occured’,’Get_Listing()’)
ENDIF

NOTES: The parameter “funcname” can be passed in as NULL if you do not wish
to record the routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.
Likewise, the parameter “msg” can be NULL unless you wish to have an

 6-105 333-EMD-001, Rev. 05

additional message appended to the system defined UNIX message. The
static variable ‘errno’ has been declared in ‘PGS_SMF.h’. Since UNIX
treats errno as a static parameter, the user will have to save the value
returned from the critical call unless the call to
‘PGS_SMF_SetUNIXMsg()’ is made immediately. If unix_errno is not a
valid constant, the static buffer will be updated with the appropriate error
message.

 This tool is primarily intended for users of the C programming language.
However, we believe that this functionality will support users of the
POSIX FORTRAN language as well. Please refer to POSIX FORTRAN
77 IEEE Std 1003.9-1992 on page 14, Section 2.4 (Error Numbers) for
information regarding POSIX FORTRAN’s implementation of standard
error return values.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0632, PGSTK-0650

 6-106 333-EMD-001, Rev. 05

Set Static Status Message

NAME: PGS_SMF_SetStaticMsg()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_SetStaticMsg(
 PGSt_SMF_code code,
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_setstaticmsg(code,funcname)
 integer code
 character*32 funcname

DESCRIPTION: This tool will provide the means to set a pre-defined error/status message
in response to the outcome of some segment of processing.

INPUTS: code-mnemonic error/status code generated by message compiler (see
 “smfcompile”)

 funcname-function where the status condition occurred

OUTPUTS: None

RETURNS:
Table 6-45. PGS_SMF_SetStaticMsg Returns

Return Description

PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error message
PGSSMF_E_LOGFILE Error opening status, report or user files
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus;
returnStatus =
 PGS_SMF_SetStaticMsg(PGSSMF_E_UNDEFINED_UNIXERROR,
 “My_Function()”);

FORTRAN: implicit none

 integer returnstatus
integer pgs_smf_setstaticMsg
returnstatus =

 6-107 333-EMD-001, Rev. 05

 pgs_smf_setstaticMsg(PGSSMF_E_UNDEFINED_UNIXERROR,
 ‘my_function()’)

NOTES: The parameter “funcname” can be passed in as NULL if you do not wish
to record that routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0650

 6-108 333-EMD-001, Rev. 05

Set Dynamic Status Message

NAME: PGS_SMF_SetDynamicMsg()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_SetDynamicMsg(
 PGSt_SMF_code code,
 char *msg,
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_setdynamicmsg(code,msg,funcname)
 integer code
 character*240 msg
 character*32 funcname

DESCRIPTION: This tool will provide the means to set a runtime specific status message,
for a particular status code, in response to the outcome of come segment
of processing.

INPUTS: code-mnemonic error/status code generated by message compiler

 msg-message string to be saved into the static buffer

 funcname-function where the status condition occurred

OUTPUTS: None

RETURNS:
Table 6-46. PGS_SMF_SetDynamicMsg Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_E_LOGFILE Error opening status, report or user files

EXAMPLES:

C: Having defined a mnemonic code in the SMF file:

 INSTR_E_BAD_CALIBRATION Calibration value %7.2f
 is not within tolerance

 6-109 333-EMD-001, Rev. 05

We would like to insert the calibration factor into the message template
during processing, since the value is not fixed prior to runtime. The
message that would be set in the status buffer would then appear as:

‘Calibration value 356.23 is not within tolerance’

 PGSt_SMF_status returnStatus;
PGSt_SMF_code code;
char msg[PGS_SMF_MAX_MSG_SIZE];
char buf[PGS_SMF_MAX_MSGBUF_SIZE];
float calibration_factor = 356.23;

 calibration_factor = Get_Instrument_Calibration(NIGHT);
/# value of 356.23 returned #/

 returnStatus =
PGS_SMF_GetMsgByCode(INSTR_E_BAD_CALIBRATION,msg);
sprintf(buf,msg,calibration_factor);

PGS_SMF_SetDynamicMsg(INSTR_E_BAD_CALIBRATION,buf,Level1A_In
itialization()”)

FORTRAN: Having defined a mnemonic code in the SMF file:

 INSTR_E_BAD_CALIBRATION Calibration value is not
 within tolerance ->

 We would like to insert the calibration factor to the end of the message
template during processing, since the value is not fixed prior to runtime.
The message that would be set in the status buffer would then appear as:

 ‘Calibration value is not within tolerance -> 356.23’

 implicit none

 integer pgs_smf_getmsgbycode
integer pgs_smf_setdynamicmsg
integer returnstatus
character*240 msg
character*480 buf
real calibration_factor
integer msglen
character*8 coeff_str

calibration_factor = get_instrument_calibration(NIGHT)

C value of 356.23 returned
 returnstatus = pgs_smf_getmsgbycode(
 INSTR_E_BAD_CODE,msg)

 6-110 333-EMD-001, Rev. 05

 write(coeff_str,’(F7.2)’) calibration_factor
 msglen = len(msg)
 buf = msg(1:msglen)//coeff_str

 pgs_smf_setdynamicmsg(INSTR_E_BAD_CALIBRATION, buf,
 ‘level1A_initialization’);

NOTES: Note that you can have the flexibility of associating any dynamic message
string to the defined mnemonic code via this routine.

 This tool can be used in various situations. For instance the user might
want to concatenate some message strings together and assign the
resultant string to an existing mnemonic code, so that this message can be
passed forward to another module for further processing. Alternatively it
can be used to embed runtime variables in the defined message template
before saving this message string to the static message buffer.

 The parameter “funcname” can be passed in as NULL if you do not wish
to record the routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.

 The parameter “msg” can be passed in as NULL. If you do, no message is
associated with the mnemonic code.

 Refer to utility “smfcompile” for additional information on the format of
the message compiler.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0650

 6-111 333-EMD-001, Rev. 05

Get Status Message by Code

NAME: PGS_SMF_GetMsgByCode()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_GetMsgByCode(
 PGSt_SMF_code code,
 char msg[]);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_getmsgbycode(code,msg)
 integer code
 character*240 msg

DESCRIPTION: This tool will provide the means to retrieve the message string that is
associated with a specific status code in the Status Message Files.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: msg-user pre-defined message string

RETURNS:
Table 6-47. PGS_SMF_GetMsgByCode Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES: See example for PGS_SMF_SetDynamicMsg().

NOTES: This tool provides a simple Status Message File (SMF) lookup function. It
should be used primarily for retrieving messages that contain C-style
formatting tokens to facilitate the replacement of those tokens with
runtime data.

REQUIREMENTS: PGSTK-0580, PGSTK-0650

 6-112 333-EMD-001, Rev. 05

Get Status Message

NAME: PGS_SMF_GetMsg()

SYNOPSIS

C: #include <PGS_SMF.h>

 void
PGS_SMF_GetMsg(
 PGSt_SMF_code *code,
 char mnemonic[],
 char msg[]);

FORTRAN: call pgs_smf_getmsg(code,mnemonic,msg)
 integer code
 character*32 mnemonic
 character*480 msg

DESCRIPTION: This tool will provide the means to retrieve status information from the
static buffer, for use when reporting on specific status conditions.

INPUTS: None

OUTPUTS: mnemonic-previously set mnemonic error/status string

 msg-previously set message string

RETURNS: None

EXAMPLES: See example for PGS_SMF_SetDynamicMsg().

NOTES: Until a call is made which sets status information into the buffer, none
exists. Therefore, first time calls to this function may return the following
for each of the arguments: code=0, mnemonic=””, and msg=””.

 A call to any of the PGS_SMF_Set*() functions will load status
information into the static buffer. To ensure that the caller of your function
can receive the intended information, calls to the PGS_SMF_Set*()
functions should be performed just prior to returning control back to the
caller.

 To ensure that the status information received pertains to the status
condition set during the last function call, it is imperative that the user
invoke this function immediately upon gaining control back from the
function that set the status information.

REQUIREMENTS: PGSTK-0580, PGSTK-0650

 6-113 333-EMD-001, Rev. 05

Get Action Message by Code

NAME: PGS_SMF_GetActionByCode()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_GetActionByCode(
 PGSt_SMF_code code,
 char action[]);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_getactionbycode(code,action)
 integer code
 character*240 action

DESCRIPTION: This tool will provide the means to retrieve an action string corresponding
to a specific mnemonic code.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: action-associated action string

RETURNS:
Table 6-48. PGS_SMF_GetActionByCode Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_W_NOACTION No action defined
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char action[PGS_SMF_MAX_ACT_SIZE];

 returnStatus =
PGS_SMF_GetActionByCode(PGSSMF_E_UNDEFINED_UNIXERROR,
 action);
if (returnStatus != PGS_S_SUCCESS)
{
 /# could not retrieve action message #/
}

 6-114 333-EMD-001, Rev. 05

else
{
 /# generate a status report and indicate action to be
 taken #/
}

FORTRAN: implicit none

 integer pgs_smf_getactionbycode
integer returnstatus
character*240 action
 returnstatus = pgs_smf_getactionbycode(
 PGSSMF_E_UNDEFINED_UNIXERROR, action);
 IF (returnstatus .NE. PGS_S_SUCCESS) THEN

C could not retrieve action message
 ELSE

C generate status report and indicate action to be taken
 ENDIF

NOTES: This routine will not return any associated action string if the creator of
the status code did not associate an action label when creating the Status
Message File entry for that status code. If this is the case, the resulting
parameter is action[0] = ‘\0’. Refer to the available documentation for the
‘smfcompile’ utility for additional information on how to define and
attach action messages to status code entries.

REQUIREMENTS: PGSTK-0591, PGSTK-0650

 6-115 333-EMD-001, Rev. 05

Create Message Tag

NAME: PGS_SMF_CreateMsgTag()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_CreateMsgTag(
 char systemTag[]);

FORTRAN: integer function pgs_smf_createmsgtag(systemtag)
 char*60 systemtag

DESCRIPTION: The tool described here allows the user to generate a runtime specific
character string that may be useful for tagging important items of data.
The string contains system defined identifiers that, when combined, can be
useful for stamping non-product specific data for system traceability.

INPUTS: None

OUTPUTS: systemTag-system defined message string

RETURNS:
Table 6-49. PGS_SMF_CreateMsgTag Returns

Return Description
PGS_S_SUCCESS Success
PGSSMF_W_NO_CONSTRUCT_TAG No information to construct message tag
PGSSMF_E_BAD_REFERENCE Bad reference

EXAMPLES:

C: char systemTag[PGSd_SMF_TAG_LENGTH_MAX];
PGSt_SMF_status returnStatus;

 returnStatus = PGS_SMF_CreateMsgTag(systemTag);
if (returnStatus == PGS_S_SUCCESS)
{
 /# create message tag successful #/
}

FORTRAN: implicit none

 integer pgs_smf_createmsgtag
char*60 systemtag
integer returnstatus

 6-116 333-EMD-001, Rev. 05

returnstatus = pgs_smf_createmsgtag(systemtag)
 IF (returnstatus .EQ. PGS_S_SUCCESS) THEN

C create message tag successful
 ENDIF

NOTES: Currently, the only system identifiers used to create the message tag are:

the Science Software Configuration ID,

and the Production Run ID.

IMPORTANT TOOLKIT NOTES

The logical parameter identifiers, which are implicitly defined by the PC
tools, are internally mapped to an associated physical parameter through
the Process Control mechanism. Therefore before this tool can be used, a
Process Control Table MUST be created and properly filled out. In
addition, the following environment variables must be set to ensure proper
operation:

 PGS_PC_INFO_FILE path to process control file

REQUIREMENTS: PGSTK-0610

 6-117 333-EMD-001, Rev. 05

Get Instrument Name

NAME: PGS_SMF_GetInstrName()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_GetInstrName(
 PGSt_SMF_code code,
 char instr[]);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_getinstrname(code,instr)
 integer code
 character*10 instr

DESCRIPTION: This tool may be used to retrieve the instrument name from a given
error/status code.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: instr-corresponding instrument name as it appears in the message text
 file after the token %INSTR.

RETURNS:
Table 6-50. PGS_SMF_GetInstrName Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char instr[PGS_SMF_MAX_INSTR_SIZE];

 returnStatus = PGS_SMF_GetInstrName(MODIS_E_BAD_CALIBRATION
,instr);
if (returnStatus == PGS_S_SUCCESS)
{
 /# record instrument that generated instrument condition
#/
}

 6-118 333-EMD-001, Rev. 05

FORTRAN: implicit none

 integer pgs_smf_getinstrname
integer returnstatus
character*10 instr

 returnstatus = pgs_smf_getinstrname(
 MODIS_E_BAD_CALIBRATION, instr)
IF (returnstatus .EQ. PGS_S_SUCCESS) THEN

C record instrument which generated status condition
ENDIF

NOTES: This function may be useful for programs which link in libraries created
by cooperating instrument teams, and where the need to distinguish the
status conditions associated with each instrument team arises.

REQUIREMENTS: PGSTK-0620, PGSTK-0650

 6-119 333-EMD-001, Rev. 05

Generate Status Report

NAME: PGS_SMF_GenerateStatusReport()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_GenerateStatusReport(
 char *report);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_generatestatusreport(report)
 char*1024 report

DESCRIPTION: This tool provides the method for the user to create status reports for use
by Science Computing Facility personnel. Each call to this procedure
causes the user defined report to be appended to the status report log.

INPUTS: report-user report generated text

OUTPUTS: None

RETURNS:
Table 6-51. PGS_SMF_GenerateStatusReport Returns

Return Description
PGS_S_SUCCESS Success
PGSSMF_E_LOGFILE Error opening status, report or user files

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 returnStatus = PGS_SMF_GenerateStatusReport(“Write it into
status report file”);
if (returnStatus == PGS_S_SUCCESS)
{
 /# write to status report successful #/
}

FORTRAN: implicit none

 integer pgs_smf_cgeneratestatusreport
integer returnStatus

 6-120 333-EMD-001, Rev. 05

 returnStatus = pgs_smf_cgeneratestatusreport(“Write it into
 status report file”)
IF (returnStatus .EQ. PGS_S_SUCCESS) THEN

C write to status report successful
ENDIF

NOTES: The system defined message tag will automatically be added to the user-
provided report.

 IMPORTANT TOOLKIT NOTES

 The logical file identifier (PGSd_SMF_LOGICAL_LOGSTATUS), which
is implicitly used by this tool, is internally mapped to an associated
physical file through the Process Control mechanism. Therefore before
this tool can be used, a Process Control Table MUST be created and
properly filled out. In addition, the following environment variables must
be set to ensure proper operation:

Table 6-52. Environment Variables
Variable Path

PGS_PC_INFO_FILE path to process control file

REQUIREMENTS: PGSTK-0650

 6-121 333-EMD-001, Rev. 05

Send Runtime Data

NAME: PGS_SMF_SendRuntimeData()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_SendRuntimeData(
 PGSt_integer numfiles,
 PGSt_integer files[])
 PGSt_integer version[];

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_sendruntimedata(numfiles,files,version)
 integer numfiles
 integer files(*)
 integer version(*)

DESCRIPTION: This tool provides the user with a method for flagging specific runtime
data files for subsequent post-processing retrieval.

INPUTS: numfiles-exact number of runtime logical file identifiers loaded into the
 array ‘files’

 files-array of logical file identifiers which are to be preserved for later
 retrieval

 version-an associated array for identifying specific versions of the files
 identified in the preceding array of logical identifiers

OUTPUTS: None

RETURNS:
Table 6-53. PGS_SMF_SendRuntimeData Returns

Return Description
PGS_S_SUCCESS Success
PGSSMF_E_SENDRUNTIME_DATA Send runtime file data error
PGSSMF_M_TRANSMIT_DISABLE Transmission of files is disabled

EXAMPLES:

C: ==
/# These constants may be defined in the users include
 file(s). #/

 6-122 333-EMD-001, Rev. 05

/# Note that these logical file identifiers would have to
 appear #/
/# in the Process Control file in order for this call to
 work. #/
#define MODIS1A 10
#define MODIS2 20
#define TEMP1 50
#define TEMP2 51
#define TEMP3 52

 PGSt_SMF_status returnStatus;
PGSt_integer numberOfFiles;
PGSt_integer logIdArray[6];
PGSt_integer version[6];
PGSt_integer version_MODIS1A_1 = 1;
PGSt_integer version_MODIS1A_2 = 2;
PGSt_integer version_MODIS2 = 1;
PGSt_integer version_TEMP = 1;

 logIdArray[0] = MODIS1A; version[0] = version_MODIS1A_1;
logIdArray[1] = MODIS1A; version[1] = version_MODIS1A_2;
logIdArray[2] = MODIS2; version[2] = version_MODIS2;
logIdArray[3] = TEMP1; version[3] = version_TEMP;
logIdArray[4] = TEMP2; version[4] = version_TEMP;
logIdArray[5] = TEMP3; version[5] = version_TEMP;
numberOfFiles = 6;

 returnStatus =
PGS_SMF_SendRuntimeData(numberOfFiles,logIdArray,version);
if (returnStatus == PGS_S_SUCCESS)
{
 /# send runtime data success #/
}

FORTRAN:

C The following constants may be defined in the users include file(s).

C Note that the specific logical file identifiers would have to appear

C in the process control file in order for this call to work.

implicit none

 integer pgs_smf_sendruntimedata
integer modis1a
parameter (modis1a = 10)
integer modis2
parameter (modis2 = 20)

 6-123 333-EMD-001, Rev. 05

integer temp1
parameter (temp1 = 50)
integer temp2
parameter (temp2 = 51)
integer temp3
parameter (temp2 = 52)

 integer returnStatus
integer numberOfFiles
integer logIdArray(6)
integer version(6)
integer version_modis1a_1
integer version_modis1a_2
integer version_modis2
integer version_temp

 version_modisa_1 = 1
version_modisa_2 = 2
version_modis2 = 1
version_temp = 1

 logIdArray(1) = modis1a
version(1) = version_modis1a_1

 logIdArray(2) = modis1a
version(2) = version_modis1a_2

 logIdArray(3) = modis2
version(3) = version_modis2

 logIdArray(4) = temp1
version(4) = version_temp

 logIdArray(5) = temp2
version(5) = version_temp

 logIdArray(6) = temp3
version(6) = version_temp

 numberOfFiles = 6

return_status =
pgs_smf_sendruntimedata(numberOfFiles,logIdArray,version)

if (return_status .EQ. PGS_S_SUCCESS) then

C send runtime data success
endif

 6-124 333-EMD-001, Rev. 05

NOTES: Repeated calls to this tool will cause previously requested files to be
superseded with the list provided during the last call.

 IMPORTANT TOOLKIT NOTES

 This tool does not trigger the spontaneous transmission of runtime files
and e-mail notification, as it did in Toolkit 3. Rather, the requested files
are saved/marked for transmission following the normal termination of the
PGE process. The actual transmission procedure is performed by the
termination process (See PGS_PC_TermCom() for more information on
the steps required to perform this transmission).

 Please refer to the documentation for PGS_PC_TermCom() for directions
on how to activate/deactivate the Toolkit’s transmission capability.

REQUIREMENTS: PGSTK-0630

 6-125 333-EMD-001, Rev. 05

Test Error Level

NAME: PGS_SMF_TestErrorLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestErrorLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testerrorlevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘E’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_SMF_boolean levelFlag;
int *intPtr;

 returnStatus = PGS_MEM_Malloc(&intPtr,sizeof(int)*10);
levelFlag = PGS_SMF_TestErrorLevel(returnStatus);
if (levelFlag
if (PGS_SMF_TestErrorLevel(returnStatus) == PGS_TRUE)
{
 /# Branch to handle error condition #/
}
else
{
 /# Some other status level returned #/
}

 6-126 333-EMD-001, Rev. 05

FORTRAN: implicit none

 INTEGER pgs_pc_getnumberoffiles
INTEGER returnstatus
INTEGER numfiles
INTEGER levelflag
PARAMETER (ceres4 = 7090)
INTEGER ceres4

 returnstatus = pgs_pc_getnumberoffiles(ceres4,numfiles)
levelflag = pgs_smf_testerrorlevel(returnstatus)
IF (levelflag .EQ. PGS_TRUE) THEN

C Branch to handle error condition
ELSE

C Some other status level returned
ENDIF

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-127 333-EMD-001, Rev. 05

Test Fatal Level

NAME: PGS_SMF_TestFatalLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestFatalLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testfatallevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘F’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

NOTES: NONE

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-128 333-EMD-001, Rev. 05

Test Message Level

NAME: PGS_SMF_TestMessageLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestMessageLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testMessagelevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘M’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

NOTES: None

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

REQUIREMENTS: PGSTK-0590

 6-129 333-EMD-001, Rev. 05

Test Warning Level

NAME: PGS_SMF_TestWarningLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestWarningLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testwarninglevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘W’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

NOTES: None

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

REQUIREMENTS: PGSTK-0590

 6-130 333-EMD-001, Rev. 05

Test User Information Level

NAME: PGS_SMF_TestUserInfoLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestUserInfoLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testuserinfolevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘U’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-131 333-EMD-001, Rev. 05

Test Success Level

NAME: PGS_SMF_TestSuccessLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestSuccessLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testsuccesslevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘S’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-132 333-EMD-001, Rev. 05

Test Notice Level

NAME: PGS_SMF_TestNoticeLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestNoticeLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testnoticelevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘N’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-133 333-EMD-001, Rev. 05

Test Status Level

NAME: PGS_SMF_TestStatusLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_TestStatusLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_teststatuslevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a defined status level
constant.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS:
Table 6-54. PGS_SMF_TestStatusLevel Returns

Return Description
PGS_SMF_MASK_LEV_S Success level status
PGS_SMF_MASK_LEV_M Message level status
PGS_SMF_MASK_LEV_U User information level status
PGS_SMF_MASK_LEV_N Notice level status
PGS_SMF_MASK_LEV_W Warning level status
PGS_SMF_MASK_LEV_E Error level status
PGS_SMF_MASK_LEV_F Fatal level status
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus;
int *intPtr;

 returnStatus = PGS_MEM_Malloc(&intPtr,sizeof(int)*10);
switch(PGS_SMF_TestStatusLevel(returnStatus))
{
 case PGS_SMF_MASK_LEV_S:

 6-134 333-EMD-001, Rev. 05

 /# This is a success level status #/
 break;

 case PGS_SMF_MASK_LEV_M:
 /# This is a message level status #/
 break;

 case PGS_SMF_MASK_LEV_U:
 /# This is a user information level status #/
 break;

 case PGS_SMF_MASK_LEV_N:
 /# This is a notice level status #/
 break;

 case PGS_SMF_MASK_LEV_W:
 /# This is a warning level status #/
 break;

 case PGS_SMF_MASK_LEV_E:
 /# This is a error level status #/
 break;

 case PGS_SMF_MASK_LEV_F:
 /# This is a fatal level status #/
 break;

 default:
 /# Undefined status level #/
 break;
}

FORTRAN: implicit none

 INTEGER pgs_pc_getnumberoffiles
INTEGER returnstatus
INTEGER numfiles
INTEGER levelmask
PARAMETER (ceres4 = 7090)
INTEGER ceres4

 returnstatus = pgs_pc_getnumberoffiles(ceres4,numfiles)
levelmask = pgs_smf_teststatuslevel(returnstatus)
IF (levelmask .EQ. PGS_SMF_MASK_LEV_S) THEN

C This is a success level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_M) THEN

C This is a message level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_U) THEN

 6-135 333-EMD-001, Rev. 05

C This is a user information level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_N) THEN

C This is a notice level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_W) THEN

C This is a warning level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_E) THEN

C This is a error level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_F) THEN

C This is a fatal level status
ELSE

C Undefined status level
ENDIF

NOTES: The returned level constants are ordered by severity with
PGS_SMF_MASK_LEV_S having a small integral value and
PGS_SMF_MASK_LEV_F having the highest. This enables you to
perform conditional tests between a particular status code and one of the
provided level constants.

REQUIREMENTS: PGSTK-0590

 6-136 333-EMD-001, Rev. 05

Begin Function

NAME: PGS_SMF_Begin()

SYNOPSIS:

C: #include <PGS_SMF.h>

PGSt_SMF_status
PGS_SMF_Begin(
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_begin(funcname)
character*100 funcname

DESCRIPTION: A call to this tool signals to SMF that a function has started, and thus, the
current message indent level should be incremented.

INPUTS:
Table 6-55. PGS_SMF_Begin Returns

Name Description
funcname The name of the function which calls this routine.

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 returnStatus = PGS_SMF_Begin(“CallingFunction”);

FORTRAN: integer pgs_smf_begin

integer returnStatus

 returnStatus = pgs_smf_begin(‘CallingFunction’)

NOTES: A message will be written to the status log file indicating that the specified
function has started.

REQUIREMENTS: PGSTK-0580,0590,0650,0663

 6-137 333-EMD-001, Rev. 05

End Function

NAME: PGS_SMF_End()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_End(
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_end(funcname)
character*100 funcname

DESCRIPTION: A call to this tool signals to SMF that a function has completed, and thus,
the current message indent level should be decremented.

INPUTS:
Table 6-56. PGS_SMF_End Returns

Name Description
funcname The name of the function which calls this routine.

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 returnStatus = PGS_SMF_End(“CallingFunction”);

FORTRAN: implicit none

 integer pgs_smf_end

 integer returnStatus

 returnStatus = pgs_smf_end(‘CallingFunction’)

NOTES: A message will be written to the status log file indicating that the specified
function has completed.

REQUIREMENTS: PGSTK-0580,0590,0650,0663

 6-138 333-EMD-001, Rev. 05

Set Arithmetic Trap

We have found that this function could not be implemented in a POSIX compliant manner
across all development platforms. We note, however, that with the exception of one
platform (IBM), all machines, by default, enable their own implementation-dependent
floating-point exception handling features. In a general sense, these features provide the
functional equivalent of the Toolkit exception handling mechanism. See “Investigation
Results on the use of Signal Exception Handling for ECS Approved Computing Platforms”
on the Toolkit Primer web page for more details.

NAME: PGS_SMF_SetArithmeticTrap()

SYNOPSIS:

C: #include <PGSSMF.h>

 PGSt_SMF_status
PGS_SMF_SetArithmeticTrap(
 void (*func)(int signo));

FORTRAN: TBD

DESCRIPTION: This tool should be used to specify a signal handling function to be called
to handle arithmetic exception events.

INPUTS: func-signal handling function

OUTPUTS: None

RETURNS:
Table 6-57. PGS_SMF_SetArithmeticTrap Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 void SignalHandler(int signo)
{
 /# algorithm to handle SIGFPE #/
}

 main()
{
 /# initialization section #/

 6-139 333-EMD-001, Rev. 05

 returnStatus = PGS_SMF_SetArithmeticTrap(SignalHandler);
 if (returnStatus == PGS_S_SUCCESS)
 {
 /# signal trap set successfully #/
 }
 else
 {
 /# signal trap not set #/
 exitStatus = 1;
 goto EXIT;
 }
 /# main body #/
 .
 .
 .
 for (alt=5000; alt<100000; alt+500)
 {
 density[alt]=(GAS_CONST * temp[alt]) / pressure[alt];
 }
 .
 .
 .
 EXIT:
 exit(existStatus);
} /# end main #/

FORTRAN: TBD
NOTES: Use NULL in place of a signal handling function to set the Toolkit default

signal handling function. This handler will force an exit from the user’s
program, which is generally more acceptable than the system’s default
action (i.e., core dump).

 Upon successful completion of the user’s signal handling function,
program control will be returned to the point where the fault occurred. As
a side-effect, the default Toolkit signal handling function will be restored
to safeguard against future occurrences of this event.

 The user’s signal handling routine must accept the integer argument for
the signal number. It is not required for the user to take any action on the
value; it is strictly for informational purposes only.

 This tool only responds to the POSIX signal SIGFPE; all other signals
need to be handled by other means.

REQUIREMENTS: PGSTK-0660

 6-140 333-EMD-001, Rev. 05

6.2.2.3 Error and Status Message File Creation Tool

Status Message File Creation

NAME: smfcompile

SYNOPSIS:

C: smfcompile -f textfile [-r] [-i]

 smfcompile -f textfile -c [r] [i]

FORTRAN: smfcompile -f textfile -f77 [-r] [-i]

ALL: smfcompile -f textfile -all [-r] [-i]

Ada: smfcompile -f textfile -ada [-r] [-i]

DESCRIPTION: This utility generates runtime status message files and language dependent
include files from user-defined status message text files.

INPUTS: textfile-status message text file (e.g., PGS_IO_100.t)

• c-create C include file

• f77-create FORTRAN include file

• all-create FORTRAN, C and Ada include files

• r-redirect the created ASCII runtime message file to the directory set in
the environment variable “PGSMSG”

• i-redirect the created language-specific include file to the directory set in
the environment variable “PGSINC”

OUTPUTS: Language-specific include file and ASCII runtime message file (an Ada
 package specification will be produced in place of an include file
 when the ‘-ada’ switch is used).

RETURNS: 1-error occurred

 0-successful operation

EXAMPLES: smfcompile -f PGS_IO_100.t (produces PGS_IO_100.h and PGS_100)

 smfcompile -f PGS_IO_100.t -c (produces PGS_IO_100.h and PGS_100)

 smfcompile -f PGS_IO_100.t -f77 (produces PGS_IO_100.f and
 PGS_100)

 6-141 333-EMD-001, Rev. 05

 smfcompile -f PGS_IO_100.t -all (produces PGS_IO_100.f,
 PGS_IO_100.h, PGS_IO_100.a and PGS_100)

NOTES: The environment variable PGSMSG must be set to the local Toolkit
installation directory ‘/../pgs/message’ in order for the Toolkit to function
properly. The reason for this is that Toolkit status message files will
already reside in this directory upon completion of the Toolkit installation
procedure; these files must be visible at runtime for the Toolkit to function
properly.

 If you do not specify the “-r” input parameter to the smfcompile, then
make sure that the newly created ASCII runtime message file is moved to
the directory set in the environment variable “PGSMSG”.

REQUIREMENTS: PGSTK-0581, PGSTK-0590, PGSTK-0591, PGSTK-0600, PGSTK-0650,
PGSTK-0664

 6-142 333-EMD-001, Rev. 05

6.2.3 Process Control Tools

The Process Control Tools perform the task of communicating Process Control information to
the PGE. This information may consist of Production Run ID; Science Software ID; physical file
names (or Universal Reference identifiers); input file metadata/ attributes; and PGE specific
runtime parameter information. Access to this data is provided through a library API and a
command-level interface, as described in detail below.

For Toolkit 5, an additional tool has been created which allows the user to query on the type of
file that is of current interest. This tool, PGS_PC_GetReference, provides the user with the
means to determine whether a file is of type temporary or product.

Another important change for Toolkit 5 involves the removal of most Toolkit dependency
information based on environment variables. All the environment variables that define the
default location for PCF information, for each PCF section (e.g., product input), have been
replaced with section headers in the PCF. The means to provide this default information is still
there, but the method has been changed. To reduce the number of environment variables that the
user would otherwise, as in the past, be required to set.

Several new tools were added for Toolkit 4; chief among them was the product metadata
retrieval tools PGS_PC_GetFileAttr and PGS_PC_GetFileByAttr. These tools provide the means
to retrieve metadata that results from an inventory search; a search performed, by the Planning
and Data Processing subsystem, as part of the normal processing setup prior to PGE execution.
These tools should not be confused with the Metadata tools that are more specialized tools for
managing the various types of metadata (See Section 6.2.1.4). These latter tools provide for the
generation and association of product metadata whereas the former only provide for the retrieval
of product metadata. Once the definition for metadata matures and the design for managing it in
the data server becomes clearer, it may be possible to unify these tools in such a way as to
provide for the greatest degree of benefit to the user.

In addition to the above, several new tools were added in Toolkit 4 to provide command, or
shell, level access to most of the process control functionality delivered in Toolkit 3. This
additional interface will provide for a greater degree of flexibility, when developing PGEs, by
allowing the user to take advantage of standard shell level features when manipulating process
control information.

However, some of these new tools have a different objective. To provide for a more seamless
integration of the Toolkit with a PGE, a few command utilities have been incorporated which
perform Toolkit initialization and termination procedures; these steps are necessary to support
the Toolkit to its fullest extent. Since these tools are used outside of the PGE, they do not place
an additional burden on the development of a PGE. The user is however encouraged to activate
these tools whenever testing is performed. To provide for this eventuality, there is now a shell
command that provides an integrated solution for the inclusion of these tools during PGE testing.

As newer, higher-level, tools have emerged, greater has the need become to abstract away the
older, lower-level tools. To safeguard against future changes in the Toolkit API, the
PGS_PC_GetPCSData and PGS_PC_PutPCSData routines were removed from the User’s Guide

 6-143 333-EMD-001, Rev. 05

in Toolkit 4. This step is necessitated by the possibility of having to support a different Process
Control implementation for the DAAC environment. We regret any inconvenience that this may
cause.

In order for these tools to function, the actual process control information needs to be specified
in a Process Control file (PCF) prior to activation of the PGE. Each Process Control file contains
various subject fields to hold specific runtime information. All product/support/temporary file
I/O subject fields follow a similar format; the ones that differ deal with system defined and user
defined parameter information. Each subject-field entry contains a key identifier and numerous
attributes that describe the particular entry.

To support testing of a PGE, the user must create entries in a PCF to account for all file inputs,
all file outputs (except intermediate and temporary), and all parameter information that the
particular PGE depends on. The key identifiers that name each entry, also need to be represented
as logical identifiers in the PGE software. Then at runtime, the attributes for a particular entry
may be retrieved by passing a specific key identifier to the appropriate PC Toolkit function.
(Note that certain IO Toolkit functions access the file I/O entries when
product/support/temporary file key identifiers are passed to them) For this reason, it would be
prudent to create a meaningful constant identifier for each key identifier in the PCF, e.g.,
TEMP1=100.

This process of defining a PCF will need to be performed for every unique instance of a PGE. At
runtime, these tools will access the particular PCF that is pointed to by the environment variable
PGS_PC_INFO_FILE.

The measures outlined in the preceding paragraph must be performed to provide the minimal
level of PGS emulation required to support the Toolkit, since many Toolkit functions rely on the
Process Control mechanism for I/O and parameter information. The Process Control File
‘PCF.v5,’ which was delivered along with the Toolkit in directory ‘$PGSHOME/runtime,’
contains all the necessary Toolkit dependencies, some of which may need to be customized for
certain Toolkit functions. To avoid PCF collisions between Toolkit and developer
dependencies, logical identifiers in the range 10,000 to 10,999 have been reserved
exclusively for Toolkit use; any other valid positive integer may be used for development
purposes.

To mediate against any potential problems caused by an improperly constructed Process Control
File; an additional tool has been added which can be used by the developer to screen a PCF for
syntax errors and missing Toolkit dependencies. For more information on the usage of this
utility, refer to the section below for the ‘pccheck’ tool.

Please refer to Appendix C for guidance on the construction of Process Control Files and to
examine a sample PCF. More details and examples on the usage of the ‘pccheck’ utility are also
included in this appendix.

 6-144 333-EMD-001, Rev. 05

6.2.3.1 Process Control Command Tools

Toolkit Shell Script Command

NAME: PGS_PC_Shell.sh

SYNOPSIS: PGS_PC_Shell.sh [-h] <PGE file> <Init string> <PCF location>
<SMF Cache Size> [-v] [-p]

C: N/A

FORTRAN: N/A

DESCRIPTION: This shell script accepts four command line arguments as input. The first
argument is the PGE to run. This may be a shell script or an executable.
The second argument is the Init string that contains 4 binary digits that
define how the Toolkit will behave. Together, these instruct the shell
about what to do in the case of using/not using shared memory or
using/not using log files. The third argument is the location of the Process
Control File (PCF). The forth argument is the SMF cache size. A fifth
argument may be used to run this script in verbose mode. A sixth
argument may be used to pass the return value of the PGE through as the
return value of the script.

INPUTS: PGE file-The full path/file name of the PGE to be run

 Init string-The string to be passed in with the instructions about what to
do with shared memory and the log file. See NOTES section for
complete description of each field in the Init string flag.

PCF location-The full path/file name of the Process Control File (PCF)

SMF Cache Size-size of SMF message cache in records

v-Run in verbose mode. Output status messages displaying settings,
current file being run.

 p-Make the return value of this script be the return value of the PGE if the
PGE is run. If the PGE does not get run then revert to the normal method
of return values for this shell.

 h-Upon receiving the -h flag a short description of the usage of
PGS_PC_Shell.sh will be provided to the user and the command will exit.

OUTPUTS: NONE

 6-145 333-EMD-001, Rev. 05

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_MEM_INIT
PGS_SH_PC_DELETETMP
PGS_SH_SMF_SENDRUNTIME
PGS_SH_SMF_SENDLOGFILE
PGS_SH_MEM_TERM
PGS_SH_SMF_LOGFILE
PGS_SH_PC_LOADDATA
PGS_SH_PC_ENV
PGS_SH_SMF_SHMMEM

EXAMPLES: PGS_PC_Shell.sh -h
PGS_PC_Shell.sh /usr/PGE/somePGE 1111
 /usr/PGE/data/PCF.current 50 -v
PGS_PC_Shell.sh /usr/home/PGE/runFile 1010
 /home/PCFDATA/pcf.data 200
PGS_PC_Shell.sh /usr/PGEhome/runThis 0000
 /home/Data/MY.pcf 150 -p

NOTES: This shell script parses the input to ensure correctness and will report any
input problems to the user.

 This shell script acts as the outer most shell for the PGE.

 The Init string flag consists of four (4) fields. Each field contains a single
digit. The digits should be a one (1) or a zero (0). Therefore the Init String
would appear as “1010” or “1111”, etc. For ease of use PGS_PC_Shell.sh
will interpret any non-zero digit as a one. Therefore, 8020 would be
interpreted as 1010, and 5500 would be interpreted as 1100, etc. The field
descriptions are listed as follows:

 FIELD 1 - 1 (or any non-zero digit) = Use shared memory if
 available
 0 = Do not use shared memory

 FIELD 2 - 1 (or any non-zero digit) = If shared memory fails
 continue using ASCII
 files
 0 = If shared memory fails stop now

 FIELD 3 - 1 (or any non-zero digit) = Use Log Files
 0 = Do not use Log Files

 FIELD 4 - 1 (or any non-zero digit) = If Log Files fail
 continue anyway
 0 = If Log Files fail stop now

 6-146 333-EMD-001, Rev. 05

In order to enable PGS_PC_Shell.sh to delete temporary files
automatically at PGE termination, one needs to call
PGS_IO_Gen_Temp_Delete within PGE or PGS_PC_TempDelCom
within the PGE shell. These functions mark the temporary file for
deletion (they add flag "D" to temporary files version number) in the PCF.
The shell script that physically removes temporary files is PGS_PC_Term
Com. This is usually the last call in the PGE shell.

REQUIREMENTS: PGSTK-1312

 6-147 333-EMD-001, Rev. 05

Toolkit Initialization Command

NAME: PGS_PC_InitCom

SYNOPSIS: PGS_PC_InitCom <shared-memory-flag> <log-file-flag> <num.-smf-
records>

C: N/A

FORTRAN: N/A

DESCRIPTION: This program performs the initialization for the PGE.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-flag stating whether or not to use shared memory

 argv[2]-flag stating whether or not to write to a log file

 argv[3]-number of SMF records to store in shared memory

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_MEM_INIT
PGS_SH_SMF_LOGFILE
PGS_SH_PC_LOADDATA
PGS_SH_PC_ENV
PGS_SH_SMF_SHMMEM

EXAMPLES: PGS_PC_InitCom ShmOn LogOn 50
PGS_PC_InitCom ShmOff LogOn 100

NOTES: This program is intended to be run from within PGS_PC_Shell.sh and is
not designed to be run from the command line as a stand-alone program.

REQUIREMENTS: PGSTK-1311

 6-148 333-EMD-001, Rev. 05

Get Physical File Reference Command

NAME: PGS_PC_GetReferenceCom

SYNOPSIS: PGS_PC_GetReferenceCom <logical ID> <version>

DESCRIPTION: This program will retrieve the physical file reference associated with a
logical ID.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the configuration parameter

 argv[2]-version of the physical file reference to retrieve. A one-to-one
relationship exists between all files except for product input files.

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297
Version=1

 Get the physical file reference associated
with ID 12297

 REFERENCE=`PGS_PC_GetReferenceCom $LogicalID $Version`
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
This is how the file name and versions remaining
can be parsed.
 FILENAME=`echo $REFERENCE | cut -f1 -d” “`
 VERSIONS=`echo $REFERENCE | cut -f2 -d” “`
FILENAME now contains the file reference.
VERSIONS now contains the versions remaining.
else

 6-149 333-EMD-001, Rev. 05

report an error found
fi
.
.
.

Another method of performing this task is as listed below. This method
only works in the Korn and Bourne shells.

 # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297
Version=1

 # Get the physical file reference associated
with ID 12297
set `PGS_PC_GetReferenceCom $LogicalID $Version`
The file reference and versions remaining will
now appear in two separate tokens.
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
 FILENAME=$1
 VERSIONS=$2
FILENAME now contains the file reference.
VERSIONS now contains the versions remaining.
else
report an error found
fi
.
.
.

A final method of performing this task is as listed below. This method
only works in the Korn and Bourne shells.

 # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297
Version=1

 # Get the physical file reference associated
with ID 12297
set “`PGS_PC_GetReferenceCom $LogicalID $Version`”

 6-150 333-EMD-001, Rev. 05

Placing double quotes around the command causes
the string to be placed in one token.
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
This is how the file name and versions remaining
can be parsed.
 FILENAME=`echo $1 | cut -f1 -d” “`
 VERSIONS=`echo $1 | cut -f2 -d” “`
FILENAME now contains the file reference.
VERSIONS now contains the versions remaining.
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE script.

 The user will be required to parse the file name and number of files
remaining from the output string. This can be done using the cut command
(See EXAMPLES). The file name and versions remaining will be
separated by a single space.

REQUIREMENTS: PGSTK-1290

 6-151 333-EMD-001, Rev. 05

Get User Defined Configuration Parameters Command

NAME: PGS_PC_GetConfigDataCom

SYNOPSIS: PGS_PC_GetConfigDataCom <logical ID>

DESCRIPTION: This program will retrieve user defined configuration parameters from the
PCF or shared memory at the command line.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the configuration parameter

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297

 # Get the parameter associated with ID 12297
CONFIG=`PGS_PC_GetConfigDataCom $LogicalID`
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE.

REQUIREMENTS: PGSTK-1291

 6-152 333-EMD-001, Rev. 05

Get Number Of Files Command

NAME: PGS_PC_GetNumberOfFilesCom

SYNOPSIS: PGS_PC_GetNumberOfFilesCom <logical ID>

DESCRIPTION: This program will retrieve the number of product input files from the PCF
or shared memory at the command line.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the product input files to be inquired

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297

 # Get the number of product files associated
with ID 12297
NUMFILES=`PGS_PC_GetNumberOfFilesCom $LogicalID`
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE.

REQUIREMENTS: PGSTK-1315

 6-153 333-EMD-001, Rev. 05

Get File Attribute Command

NAME: PGS_PC_GetFileAttrCom

SYNOPSIS: PGS_PC_GetFileAttrCom <logical ID> <version> <format flag>

DESCRIPTION: This program will retrieve a file attribute string or location associated with
a product input file from the PCF or shared memory at the command line.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the configuration parameter

 argv[2]-version number of file to retrieve attribute for

 argv[3]-format flag that states whether to return the attribute or the
location of the file attribute. Possible values are:

 PGSd_PC_ATTRIBUTE_LOCATION
PGSd_PC_ATTRIBUTE_STRING

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR
PGS_SH_PC_TRUNC

EXAMPLES: The following example is valid for the Bourne and Korn shells only.

 # This is within a shell script - probably within the
PGE script.
Set our format flag values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
: ${PGSd_PC_ATTRIBUTE_LOCATION=1}
: ${PGSd_PC_ATTRIBUTE_STRING=2}

 LogicalID=12297
Version=1
FormatFlag=$PGSd_PC_ATTRIBUTE_STRING

 # Get the file attribute string associated with
the first file of product ID 12297
ATTR=`PGS_PC_GetFileAttrCom $LogicalID $Version $FormatFlag`
RETVAL=$?

 6-154 333-EMD-001, Rev. 05

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
Variable ATTR now contains the attribute string
else
report an error found
fi
.
.
.

 If the user wishes to use a c-shell script this is the recommended technique
to use. In a c-shell script if the user fails to use this technique the script
will give undefined results (see NOTES).

 # This is within a shell script - probably within the
PGE script.
Set our format flag values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
set PGSd_PC_ATTRIBUTE_LOCATION=1
set PGSd_PC_ATTRIBUTE_STRING=2

 set LogicalID=12297
set Version=1
set FormatFlag=$PGSd_PC_ATTRIBUTE_STRING

 # Get the file attribute string associated with
the first file of product ID 12297
PGS_PC_GetFileAttrCom $LogicalID $Version $FormatFlag
>out.file
set RETVAL=$status

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
File out.file now contains the attribute string
else
report an error found
fi
.
.
.

 6-155 333-EMD-001, Rev. 05

NOTES: This program is designed to be run from within the PGE.

 If the format flag passed in is equal to PGSd_PC_ATTRIBUTE_STRING
the return value is the attribute string appended as one long string. If the
format flag passed in is equal to PGSd_PC_ATTRIBUTE_LOCATION
the return value is the attribute location that is a full path and file name of
the file containing the attribute string.

 If the user wishes to use this program in a c-shell script the output of the
program must be re-directed to a file and the file can then be manipulated.
A long string can not be assigned to a variable in a c-shell script.
Attempting to assign a long string to a variable will give undefined results
in the c-shell.

REQUIREMENTS: PGSTK-1314

 6-156 333-EMD-001, Rev. 05

Get the Temporary File Reference Command

NAME: PGS_PC_GetTempReferenceCom

SYNOPSIS: PGS_PC_GetTempReferenceCom <logical ID> <duration of file>

DESCRIPTION: This program will retrieve a temporary file reference from the PCF. If a
reference does not exist it will create one.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the temporary file reference

 argv[2]-file duration

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 # Set our endurance values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
: ${PGSd_IO_Gen_NoEndurance=0}
: ${PGSd_IO_Gen_Endurance=1}

 LogicalID=12297
Endurance=$PGSd_IO_Gen_NoEndurance

 # Get the temporary physical file reference associated
with ID 12297
TEMPREFERENCE=`PGS_PC_GetTempReferenceCom $LogicalID
$Endurance`
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
This is how the file name and existence flag
can be parsed.
 FILENAME=`echo $TEMPREFERENCE | cut -f1 -d” “`
 EXISTS=`echo $TEMPREFERENCE | cut -f2 -d” “`

 6-157 333-EMD-001, Rev. 05

FILENAME now contains the file reference.
EXISTS now contains the existence flag.
else
report an error found
fi
.
.
.

Another method of performing this task is as listed below. This method
only works in the Korn and Bourne shells.

 # This is within a shell script - probably within the
PGE script.

 # Set our endurance values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
: ${PGSd_IO_Gen_NoEndurance=0}
: ${PGSd_IO_Gen_Endurance=1}

 LogicalID=12297
Endurance=$PGSd_IO_Gen_NoEndurance

 # Get the temporary physical file reference associated
with ID 12297
set `PGS_PC_GetTempReferenceCom $LogicalID $Endurance`
The file reference and existence flag will
now appear in two separate tokens.
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
 FILENAME=$1
 EXISTS=$2
FILENAME now contains the file reference.
EXISTS now contains the existence flag.
else
report an error found
fi
.
.
.

A final method of performing this task is as listed below. This method
only works in the Korn and Bourne shells.

 6-158 333-EMD-001, Rev. 05

 # This is within a shell script - probably within the
PGE script.

 # Set our endurance values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
: ${PGSd_IO_Gen_NoEndurance=0}
: ${PGSd_IO_Gen_Endurance=1}

 LogicalID=12297
Endurance=$PGSd_IO_Gen_NoEndurance

 # Get the temporary physical file reference associated
with ID 12297
set “`PGS_PC_GetTempReferenceCom $LogicalID $Endurance`”
Placing double quotes around the command causes
the string to be placed in one token.
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
This is how the file name and versions remaining
can be parsed.
 FILENAME=`echo $1 | cut -f1 -d” “`
 EXISTS=`echo $1 | cut -f2 -d” “`
FILENAME now contains the file reference.
EXISTS now contains the existence flag.
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE.

 If a temporary file reference does not exist for the logical ID then a
reference is created. The user will be able to determine if the reference
existed by checking the existence flag portion of the program return (See
EXAMPLES).

 The user will be required to parse the file name and the existence flag
from the output string. This can be done using the cut command (See
EXAMPLES). The file name and the existence flag will be separated by a
single space.

REQUIREMENTS: PGSTK-0531, PGSTK-0535, PGSTK-1291

 6-159 333-EMD-001, Rev. 05

Delete Temporary File Command

NAME: PGS_PC_TempDeleteCom

SYNOPSIS: PGS_PC_TempDeleteCom <logical ID>

DESCRIPTION: This program will flag a temporary file as deleted in the PCF or shared
memory at the command line.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the temporary file to be deleted

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297

 # Delete the temporary file with the logical ID 12297
PGS_PC_TempDeleteCom $LogicalID
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE.

REQUIREMENTS: PGSTK-0521

 6-160 333-EMD-001, Rev. 05

Get File Size Command

NAME: PGS_PC_GetFileSizeCom

SYNOPSIS: PGS_PC_GetFileSizeCom <logical ID>

DESCRIPTION: This program will retrieve the file size of the file associated with the input
logical ID and version in the users Process Control File (PCF).

INPUTS: argc-number of command line arguments
argv[0] - logical ID (in the PCF) of the desired file
argv[1] - file version number

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell. This example assumes there is an entry for
for a file in the users PCF with logical ID 101

LogicalID=101
Version=1

Get the physical file size associated with the user's
input arguments LogicalID and Version

SIZE= `PGS_PC_GetFileSizeCom $LogicalID $Version`
RETVAL=$?

Check the return value

if [$RETVAL -eq 0]
then

SIZE now contains the file size.
continue normal processing...

:
:

else

handle error case...
 :
 :
fi

 6-161 333-EMD-001, Rev. 05

NOTES: This program is designed to be run from within the PGE.

REQUIREMENTS: PGSTK-1290

 6-162 333-EMD-001, Rev. 05

Toolkit Termination Command

NAME: PGS_PC_TermCom

SYNOPSIS: PGS_PC_TermCom <shared-memory-flag> <log-file-flag>

C: N/A

FORTRAN: N/A

DESCRIPTION: This program runs the functions necessary to clean up shared memory,
send runtime files, send logfiles, update the PCF, and remove temporary
files (it removes the temporary files if PGS_IO_Gen_Temp_Delete is
called within PGE or PGS_PC_TempCom is called within the PGE shell).

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-flag stating whether or not to use shared memory

 argv[2]-flag stating whether or not to write to a log file

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_PC_DELETETEMP
PGS_SH_SMF_SENDRUNTIME
PGS_SH_SMF_SENDLOGFILE
PGS_SH_MEM_TERM

EXAMPLES: PGS_PC_TermCom ShmOff LogOff
PGS_PC_TermCom ShmOn LogOff

NOTES: The send file capability of PGS_PC_TermCom is SCF functionality.
This functionality will be disabled at the Release B DAACs, but will
remain available to the SCF toolkit.

The PGS_PC_TermCom tool was developed two years ago to allow SCF
developers to send files to other locations in the absence of a data
distribution capability. This toolkit tool was not meant to replace the ECS
DAAC distribution system, but to supply functionality prior to the system
availability. Instrument teams can use the distribution system, by writing
an ESDT for QA files. The subscription service (B.1) can then push the
files to the requestor.

In the B.0 timeframe, there is no push, per se. A work-around could be to
use the Version 0 Client ordering function. Or, an email message could be
sent, announcing the presence of a QA file. If this message were sent to a

 6-163 333-EMD-001, Rev. 05

special account, a script could then be run to pull the QA files out of the
DAAC. This is a temporary solution, prior to B.1 operation.

If a PGE Fails:. Files are marked for sending, packaged up in a Failed
Production History tar file (if and only if the PGE fails), and archived on
the Data Server. The SCF is then notified and can retrieve it. If the PGE
succeeds, the marked files are not put into a tar file.

 The SCF Functionality:

This program is designed to be run from within the PGS_PC_Shell.sh
script and is not intended to be run as a stand alone program from the
command line. Running this program outside the script PGS_PC_Shell.sh
will give undefined results.

 Since this tool now supports the transfer of status and runtime files,
certain steps need to be performed by the user to ensure that this transfer
operation is carried-out properly.

 FILE TRANSFER SETUP

 The current transfer mechanism (ftp) requires the use of a ‘.netrc’ file,
which must reside in the user’s home directory on the execution host. ‘ftp’
accesses this file to establish a connection with the remote host. Once the
connection is made, the process of performing the actual file transfer can
proceed.

 This file must contain information in the following format:

machine <hostname> login <username> password <userpassword>

For example:

machine adriatic login guest password anonymous

For reasons of security, the ‘.netrc’ file should ONLY have read
permission for the user, (i.e., -rw-------).

(Refer to the man pages on netrc for more information.)

PROCESS CONTROL SETUP

As part of the transfer operation, this tool also transmits a notification
message to the interested parties to inform them as to the disposition of the
requested runtime and status files.

As with many other Process Control tools, this tool depends on certain
entries in the Process Control File. The values of these entries however are
user defined according to their local environment.

 6-164 333-EMD-001, Rev. 05

Refer to the standard Process Control File to find the following entries:

 10109|TransmitFlag; 1=transmit,0=disable|0
- Set to 1 to enable file/e-mail transmission.

 10106|RemoteHost|<hostname>
- Host should be the same as that which appears in the ‘.netrc’ file.

 10107|RemotePath|<destination directory>
- Directory must be writeable and large enough to hold the
 transferred data.

 10108|EmailAddresses|<list of notification addresses>
- Notification message indicates which files have been transferred
 and where they currently reside.

WARNING-Do not attempt to transfer files to the same host and directory
that this program is running on. The original files will be deleted in
accordance with the ftp protocol for sending and receiving files. That is to
say that, upon determination that the destination file is the same as the
source; the destination file will be removed before sending the source file.

REQUIREMENTS: PGSTK-1311

 6-165 333-EMD-001, Rev. 05

6.2.3.2 Process Control API Tools

Get a File Reference from Logical

NAME: PGS_PC_GetReference()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetReference(
 PGSt_PC_Logical prodID,
 PGSt_integer *version,
 char *referenceID)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getreference(prodid,version,referenceid)
 integer prodid
 integer version
 character*200 referenceid

DESCRIPTION: This tool may be used to obtain a physical reference (file name) from a
logical identifier.

INPUTS: prodID-User defined constant identifier that internally represents the
 current product.

version-Version of reference to get. Remember, for standard input files
there can be a many-to-one relationship.

OUTPUTS: referenceID-The actual file reference returned as a string

 version-The number of versions remaining for the requested Product ID

RETURNS:
Table 6-58. PGS_PC_GetReference Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_W_NO_REFERENCE_FOUN
D

link number does not have the data that mode is requesting

PGSPC_E_DATA_ACCESS_ERROR problem while accessing PCS data

 6-166 333-EMD-001, Rev. 05

EXAMPLES:

C: #define MODIS1A 2530

 PGSt_integer version;
char referenceID[PGSd_PC_FILE_PATH_MAX];
PGSt_SMF_status returnStatus;

 /# Get first version of the file #/
version = 1;

 returnStatus =
 PGS_PC_GetReference(MODIS1A,&version,referenceID);

/# version now contains the number of versions remaining #/

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{ /# perform necessary operations on file #/ }
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 integer version
character*135 referenceid
integer returnstatus
integer pgs_pc_getreference
integer modis1a
parameter (modis1a = 2530)

C Get the first version of the file
version = 1

 returnstatus = getreference(modis1a,version,referenceid)

 if (returnstatus .ne. pgs_s_success)
 goto 9999
else

C perform necessary operations on file
 .
 .
 .
9999 return

 6-167 333-EMD-001, Rev. 05

NOTES: All reference identifier strings are guaranteed to be no greater than
PGSd_PC_FILE_PATH_MAX characters in length (see PGS_PC.h).

 The version returns the number of files remaining for the product group.
For example, if there are eight (8) versions of a file when the user requests
version one (1) the value seven (7) is returned in version. When the user
requests version two (2) the value six (6) is returned in version, etc.
Therefore, it is not recommended to use version as a loop counter that is
also passed into PGS_PC_GetReference().

REQUIREMENTS: PGSTK-1290

 6-168 333-EMD-001, Rev. 05

Access File Reference Type from PCF

NAME: PGS_PC_GetReferenceType()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetReferenceType(
 PGSt_PC_Logical identifier
 PGSt_integer *type)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getreferencetype(identifier,type)
 integer identifier
 integer type

DESCRIPTION: This tool may be used to ascertain the type of file reference that is
associated with a logical identifier within the science software.

INPUTS: identifier-The logical identifier as defined by the user. (This value must
 be mapped to an actual value via the PCF.)

OUTPUTS: type-Reference types that are defined in the PGS_PC header file.
 Possible values are:

 PGSd_PC_INPUT_FILE_NAME
 PGSd_PC_OUTPUT_FILE_NAME
 PGSd_PC_TEMPORARY_FILE
 PGSd_PC_INTERMEDIATE_INPUT
 PGSd_PC_INTERMEDIATE_OUTPUT
 PGSd_PC_SUPPORT_IN_NAME
 PGSd_PC_SUPPORT_OUT_NAME

RETURNS:
Table 6-59. PGS_PC_GetReferenceType Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_W_NO_FILES_FOR_ID The Product ID does not contain a physical reference.
PGSPC_E_ENVIRONMENT_ERROR Environment variable not set
PGSPC_E_DATA_ACCESS_ERROR Error accessing Process Control Status data

 6-169 333-EMD-001, Rev. 05

EXAMPLES:

C: #define INSTR_SCRATCH_SPACE 2001

 PGSt_SMF_status returnStatus;
PGSt_PC_Logical fileIdentifier;
PGSt_integer fileType;

 fileIdentifier = INSTR_SCRATCH_SPACE;

 /# getting the type attribute of a file #/

 returnStatus =
 PGS_PC_GetReferenceType(fileIdentifier,&fileType);
if (returnStatus != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
else
{
 switch (fileType)
 {
 case PGSd_PC_INPUT_FILE_NAME:
 case PGSd_PC_OUTPUT_FILE_NAME:
 case PGSd_PC_SUPPORT_IN_NAME:
 case PGSd_PC_SUPPORT_OUT_NAME:
 /#
 open standard product or support file
 #/
 returnStatus = PGS_IO_Gen_Open();
 .
 .
 .
 break;

 case PGSd_PC_INTERMEDIATE_INPUT:
 case PGSd_PC_INTERMEDIATE_OUTPUT:
 case PGSd_PC_TEMPORARY_FILE:
 /#
 open temporary or intermediate file
 #/
 returnStatus = PGS_IO_Gen_Temp_Open();
 .
 .
 .
 break;
 default:

 6-170 333-EMD-001, Rev. 05

 /#
 invalid type returned only in the event that
 call to *GetReferenceType was not successful
 #/

 } /# end switch (fileType) #/
}
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 INTEGER INSTR_SCRATCH_SPACE
PARAMETER (INSTR_SCRATCH_SPACE = 2001)

 integer returnstatus
integer fileidentifier
integer filetype
integer pgs_pc_getreferencetype

 fileidentifier = INSTR_SCRATCH_SPACE

C getting the type attribute of a file

 returnstatus =
 pgs_pc_getreferencetype(fileidentifier,filetype)
if (returnstatus .ne. pgs_s_success) then
 goto 9999
else if (
 (filetype .eq. PGSd_PC_INPUT_FILE_NAME) .or.
 (filetype .eq. PGSd_PC_OUTPUT_FILE_NAME) .or.
 (filetype .eq. PGSd_PC_SUPPORT_IN_NAME) .or.
 (filetype .eq. PGSd_PC_SUPPORT_OUT_NAME)
) then

C open standard product or support file

 returnstatus = PGS_IO_Gen_OpenF(...);
 .
 .
 .
else if (
 (filetype .eq. PGSd_PC_INTERMEDIATE_INPUT) .or.
 (filetype .eq. PGSd_PC_INTERMEDIATE_OUTPUT) .or.
 (filetype .eq. PGSd_PC_TEMPORARY_FILE)
) then

 6-171 333-EMD-001, Rev. 05

C open temporary or intermediate file

 returnstatus = PGS_IO_Gen_Temp_OpenF(...);
 .
 .
 .
else

C invalid type returned only in the event that
C call to *GetReferenceType was not successful

endif

9999 return

NOTES: This tool will return the reference type (mode) for files that have
references in a Process Control File (PCF). This tool will not identify
runtime parameters as such.

 In order for this tool to function properly, a valid Process Control File will
need to be created first. Please refer to Appendix C (User’s Guide) for
instructions on how to create and validate such a file.

REQUIREMENTS: PGSTK-1290.

 6-172 333-EMD-001, Rev. 05

Generate a Unique ID

NAME: PGS_PC_GenUniqueID()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GenUniqueID(
 PGSt_PC_Logical prodID,
 char *uniqueID)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_genuniqueid(prodid,uniqueid)
 integer prodid
 character*200 uniqueid

DESCRIPTION: This tool may be used to generate a unique product identifier. This
identifier may be attached to file metadata to facilitate tracking of
production output. The identifier may include Production Run ID, the
Science Software Program ID, and the actual Product ID.

INPUTS: prodID-The logical identifier as defined by the user. The user’s
 definitions will be mapped into actual identifiers during the
 Integration & Test procedure.

OUTPUTS: uniqueID-The unique ID generated by this function. This ID will be
 returned as a string. The ID is guaranteed to be no greater than
 PGSd_PC_LABEL_SIZE_MAX in length (see PGS_PC.h).

RETURNS:
Table 6-60. PGS_PC_GenUniqueID Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

EXAMPLES:
C: #define CERES3A 300

 PGSt_SMF_status returnStatus;
char uniqueID[PGSd_PC_LABEL_SIZE_MAX];

 returnStatus = PGS_PC_GenUniqueID(CERES3A,uniqueID);

 6-173 333-EMD-001, Rev. 05

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{

/# attach uniqueID into file metadata field #/

 }
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 integer returnstatus
character*200 uniqueid
integer pgs_pc_genuniqueid
integer ceres3a
parameter (ceres3a = 300)

 returnstatus = pgs_pc_genuniqueid(ceres3a,uniqueid)

 if (returnstatus .ne. pgs_s_success) then
 goto 9999
else

C attach uniqueid into file metadata field

 endif
 .
 .
 .

return

NOTES: If more than one product is being generated from the same PGE, then the
appropriate product identifier must be used as input to this function when
called from within the science software. Upon entry into this function all
input values will be checked to determine that legal values were passed in.
If any value is illegal, the function will return the proper error value to the
calling function. All unique identifier strings are guaranteed to be no
greater than PGSd_PC_LABEL_SIZE_MAX characters in length (see
PGS_PC.h).

REQUIREMENTS: PGSTK-1280.

 6-174 333-EMD-001, Rev. 05

Get User Defined Configuration Values

NAME: PGS_PC_GetConfigData()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetConfigData(
 PGSt_PC_Logical configParamID,
 char *configParamVal)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getconfigdata(configparamid,
* configparamval)
 integer configparamid
 character*200 configparamval

DESCRIPTION: This tool may be used to import run-time configuration parameters into
the PGE.

INPUTS: configParamID-User defined constant that internally represents a
 configuration parameter.

OUTPUTS: configParamVal-A string representation of the configuration parameter
 value. No interpretation of this value will be done in the Toolkit;
 the value returned will be left to the application programmer.

RETURNS:
Table 6-61. PGS_PC_GetConfigData Returns
Return Description

PGS_S_SUCCESS successful execution
PGSPC_W_NO_CONFIG_FOR_ID no configuration data for product id
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

EXAMPLES:

C: #define MODIS1A_CONFIG1 2990

 char configParamVal[PGSd_PC_VALUE_LENGTH_MAX];
PGSt_SMF_status returnStatus;
long config1;

 6-175 333-EMD-001, Rev. 05

 returnStatus =
 PGS_PC_GetConfigData(MODIS1A_CONFIG1,configParamVal);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{
 /# MODIS1A_CONFIG1 is integral parameter #/
 config1 = atoi(configParamVal);

 if (config1 > 0)
 {
 /# activate sub-process A #/
 }
 else
 {
 /# activate sub-process B #/
 }
}
 .
 .
 .

 EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 character*200 configparamval
integer returnstatus
integer pgs_pc_getconfigdata
integer config1
integer modis1a_config1
parameter (modis1a_config1 = 2990)

 returnstatus =
 pgs_pc_getconfigdata(modis1a_config1,configparamval)

 if (returnstatus .ne. success) then
 goto 9999
else

C
C modis1a_config1 is integral parameter
C assuming you have a function to convert character
C data to integer data - called.....strtoint.
C strtoint(configparamval,config1)

 6-176 333-EMD-001, Rev. 05

 if (config1 .gt. 0) then
C activate sub-process A
 else
C activate sub-process B
 .
 .
 .
 endif

endif

return

NOTES: All configuration parameter value strings are guaranteed to be less than
PGSd_PC_VALUE_LENGTH_MAX characters in length (see
PGS_PC.h). There will be a shell script command version of this routine
to retrieve configuration information from the script.

REQUIREMENTS: PGSTK-1290.

 6-177 333-EMD-001, Rev. 05

Get Number of Files Associated with a Product

NAME: PGS_PC_GetNumberOfFiles()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetNumberOfFiles(
 PGSt_PC_Logical prodID,
 PGSt_integer *numFiles)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getnumberoffiles(prodid,numfiles)
 integer prodid,
 integer numfiles)

DESCRIPTION: This tool may be used to determine the number of files that are associated
with a particular Product ID. A many-to-one relationship may exist with
Product Input, Product Output Support Input and Support Output files.
This function will give the user a way to determine how many files exist
for a product ID.

INPUTS: prodID-The logical identifier as defined by the user. The user’s
 definitions will be mapped into actual identifiers during the
 Integration & Test procedure.

OUTPUTS: numberOfFiles-Total number of files for a particular product ID.

RETURNS:
Table 6-62. PGS_PC_GetNumberOfFiles Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_W_NO_FILES_FOR_ID incorrect number of configuration parameters
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

EXAMPLE:

C: #define CERES4 7090

 PGSt_integer numFiles;
PGSt_integer version;

 6-178 333-EMD-001, Rev. 05

PGSt_SMF_status returnStatus;
int loopCounter;
char ceresFiles[10][PGSd_PC_FILE_PATH_MAX];

 returnStatus = PGS_PC_GetNumberOfFiles(CERES4,&numFiles);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{

/# loop and get file names #/

 for (loopCounter = 0; loopCounter < numFiles;
 loopCounter++)
 {

/# specify which file to get #/

version = loopCounter + 1;

/# save references for future use #/

 returnStatus =
 PGS_PC_GetReference(CERES4,&version,
 ceresFiles[loopCounter]);
 }
}
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 integer numfiles
integer version
integer returnstatus
integer loopcounter
character*355 referenceid
character*355 ceresfiles(10)
integer pgs_pc_getnumberoffiles
integer pgs_pc_getreference
integer ceres4
parameter (ceres4 = 7090)

 returnstatus = pgs_pc_getnumberoffiles(ceres4,numfiles)

 6-179 333-EMD-001, Rev. 05

 if (returnstatus .ne. pgs_s_success)
 goto 9999
 else
 do 100 loopcounter = 1,numfiles
 version = loopcounter
 returnstatus = pgs_pc_getreference(ceres4,
 * version,
 * ceresfiles(loopcounter))
 100 continue
 .
 .
 .
 9999 return

NOTES: This function will allow a one-to-many relationship to exist between
logical and physical file name. The file version number is returned in
reverse order. For example, if there are eight (8) versions of a Product ID
and the user requests the first one, the value eight (8) would be returned in
numFiles.

REQUIREMENTS: PGSTK-1290

 6-180 333-EMD-001, Rev. 05

Get the Attribute of the File Associated with the Particular
Product ID and Version

NAME: PGS_PC_GetFileAttr()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetFileAttr(
 PGSt_PC_Logical prodID,
 PGSt_integer version
 PGSt_integer formatFlag,
 PGSt_integer maxSize,
 char *fileAttribute)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function
pgs_pc_getfileattr(prodid,version,formatflag,fileAttribute)
 integer prodid
 integer version
 integer formatflag
 integer maxSize
 character*(*) fileAttribute

DESCRIPTION: This tool may be used to retrieve an attribute associated with a particular
product ID and version number. The data placed in the attribute will be
defined and interpreted by the user. The SDP Toolkit has no dependency
on the attribute.

INPUTS: prodID-The logical identifier as defined by the user. The user’s
 definitions will be mapped into actual identifiers during the
 Integration & Test procedure.

version-The particular version of the Product ID that the attribute is being
requested from. With files there may be a many-to-one
relationship.

 formatFlag-Flag indicating method of attribute return. Possible values
 are:

 PGSd_PC_ATTRIBUTE_LOCATION
 PGSd_PC_ATTRIBUTE_STRING

 6-181 333-EMD-001, Rev. 05

maxSize-Amount of space allocated for attribute if formatFlag is
PGSd_PC_ATTRIBUTE_STRING.

OUTPUTS: fileAttribute-The actual file attribute

If formatFlag is PGSd_PC_ATTRIBUTE_LOCATION then fileAttribute
will return the file containing the attribute.

If formatFlag is PGSd_PC_ATTRIBUTE_STRING then fileAttribute will
return the attribute as a string.

RETURNS:
Table 6-63. PGS_PC_GetFileAttr Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_W_NO_REFERENCE_FOUN
D

no reference found matching product id and version
number

PGSPC_W_ATTR_TRUNCATED not enough space passed in for attribute
PGSPC_W_NO_ATTR_FOR_ID a physical reference was found but no attribute exists for

that reference
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data
PGSPC_E_INVALID_MODE invalid format flag value passed in

EXAMPLE:

C: #define MODIS1A 4220

 PGSt_integer version;
PGSt_integer maxSize;
PGSt_SMF_status returnStatus;
char fileAttribute[PGSd_PC_FILE_PATH_MAX];

 version = 1;
maxSize = 0;

 /# get the attribute file name of the first MODIS1A file #/

 returnStatus = PGS_PC_GetFileAttr(MODIS1A,version,
 PGSd_PC_ATTRIBUTE_LOCATION,maxSize,fileAttribute);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{

 /# open attribute file and search attribute for particular
 data #/

 6-182 333-EMD-001, Rev. 05

 }
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 integer version
integer returnstatus
integer maxsize
character*355 fileattribute
integer pgs_pc_getfileattr
integer modis1a
parameter (modis1a = 4220)

 version = 1
maxsize = 355

C get the attribute file name of the first modis1a file

 returnstatus = pgs_pc_getfileattr(modis1a,version,
 PGSd_PC_ATTRIBUTE_LOCATION,maxsize,fileattribute)

 if (returnstatus .ne. pgs_s_success) then
 goto 9999

else

C open attribute file and search attribute for
C particular data

 endif
 .
 .
 .
return

NOTES: Allocating enough space for the attribute variable will be the
responsibility of the application programmer. This function will write the
attribute into fileAttribute for maxSize bytes or the end of the attribute,
which ever comes first.

REQUIREMENTS: PGSTK-1290, PGSTK-1310

 6-183 333-EMD-001, Rev. 05

Get the Version Number of the Particular File Matching the Attribute

NAME: PGS_PC_GetFileByAttr()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetFileByAttr(
 PGSt_PC_Logical prodID,
 PGSt_integer (*searchFunc)(char *attr),
 PGSt_integer maxSize,
 PGSt_integer *version)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function
pgs_pc_getfilebyattr(prodid,searchfunc,
* maxsize,version)
 integer prodid
 integer searchfunc
 integer maxSize
 integer version

DESCRIPTION: This tool may be used to retrieve the version number associated with a file
with a particular attribute.

INPUTS: prodID-The logical identifier as defined by the user. The user’s
 definitions will be mapped into actual identifiers during the
 Integration & Test procedure.

searchFunc-A user defined function that performs the search on the
attribute. This function must be passed in as a type PGSt_integer
function. It should return type PGSd_PC_MATCH upon a
successful attribute match or PGSd_PC_NO_MATCH upon an
unsuccessful attribute match.

 maxSize-Maximum amount of space to place into attribute.

OUTPUTS: version-The version number of the file with the successful attribute match

 6-184 333-EMD-001, Rev. 05

RETURNS:
Table 6-64. PGS_PC_GetFileByAttr Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_W_NO_ATTR_MATCH did not find a match with the specified product ID
PGSPC_W_NO_ATTR_FOR_ID the product ID contains no attribute
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

EXAMPLE:

C: #define MODIS1A 5775

 PGSt_integer searchfunc_(char *attr); /# function
 prototype #/

 /# The function passed into PGS_PC_GetFileByAttr() MUST be
 called #/
/# searchfunc_#/

 PGSt_integer maxSize;
PGSt_integer version;
PGSt_SMF_status returnStatus;
char referenceID[PGSd_PC_FILE_PATH_MAX];

 maxSize = 300;

 returnStatus = PGS_PC_GetFileByAttr(MODIS1A,searchfunc_,
 maxSize,&version);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{

/# get file reference #/

 returnStatus =
 PGS_PC_GetReference(MODIS1A,version,referencID);

 }
 .
 .
 .
EXCEPTION:
 return returnStatus;

 6-185 333-EMD-001, Rev. 05

FORTRAN: implicit none

 integer version
integer searchfunc

C The function passed into pgs_pc_getfilebyattr() MUST be called searchfunc

 integer maxsize
integer returnstatus
integer pgs_pc_getfilebyattr
integer pgs_pc_getreference
character*355 referenceid
integer modis1a
parameter (modis1a = 5775)

 maxsize = 300

 returnstatus = pgs_pc_getfilebyattribute(modis1a,
 * searchfunc,maxsize,version)

 if (returnstatus .ne. pgs_s_success) then
 goto 9999
else

C
C get file reference
C
 returnstatus = pgs_pc_getreference(modis1a,version,
 * referenceid)
 endif
 .
 .
 .
 return

NOTES: The attribute checking is left to the application programmer. The attribute
for comparison must be passed into searchFunc by means of a global
variable. The attribute to be compared against will be passed into
searchFunc by the function PGS_PC_GetFileByAttr(). The function
searchFunc must have declared a variable large enough to handle the
incoming attribute. The attribute will be read until maxSize bytes or end
of file, which ever come first.

REQUIREMENTS: PGSTK-1290

 6-186 333-EMD-001, Rev. 05

Check Process Control Information File (PCF)

NAME: pccheck.sh

SYNOPSIS: pccheck.sh [-h] <-i user-PCF> [-o numbered-PCF] [-c standard PCF] [-s]

C: N/A

FORTRAN N/A

DESCRIPTION: The purpose of this tool is to assist the developer in setting up a Process
Control File (PCF). This utility will help to point out simple syntax and
content errors that might lead to more serious runtime errors, if left
uncorrected. This tool will not, however, detect errors in logic, nor will it
correct PCF files.

INPUTS: -i <PCF>-The -i flag will be followed by the Process Control Information
 File. This flag is mandatory.

• o <outfile>-The -o flag will be followed by a file name that will be output
by this command. The name of output file must be a file that does not
already exist. This flag is optional.

• h-Upon receiving the -h flag a short description of the usage of pccheck.sh
will be provided to the user and the command will exit.

• c-The -c option will cause a compare to be run against a specified template
file. The compare will only compare the reserved Product ID’s.

• s-The -s flag will cause all output except for the output from the -c flag to
be suppressed.

OUTPUTS: NONE

RETURNS: 0 - Normal completion
1 - Error condition

EXAMPLE: pccheck.sh -i $PGSHOME/runtime/pcf.fil -o out.fil
pccheck.sh -o out.fil -i $PGSHOME/runtime/pcf.fil
pccheck.sh -i $PGSHOME/runtime/pcf.fil -o out.fil -c
 $PGSRUN/PC/PCF.v3
pccheck.sh -i $PGSHOME/runtime/pcf.fil -c $PGSRUN/PC/PCF.v3
 -s
pccheck.sh -i in.fil
pccheck.sh -h

 6-187 333-EMD-001, Rev. 05

NOTES: This shell script accepts an input file (PCF) and an optional output file.
The output file will be an exact copy of the input file except that line
numbers are inserted into the file. This output file is provided as a
convenience to the user when analyzing the generated report, which
sometimes references line locations in the original PCF. This utility is also
capable of comparing against a “standardized” PCF file to detect changes
that have been made to the SDP Toolkit specific records (those with
reserved logical identifiers in the 10K-11K range); the optional
suppression flag prevents all output, other than the comparison results,
from being reported.

REQUIREMENTS: PGSTK-1313

 6-188 333-EMD-001, Rev. 05

Get Universal Reference from Logical

NAME: PGS_PC_GetUniversalRef()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetUniversalRef(
 PGSt_PC_Logical prodID,
 PGSt_integer* version,
 char *universalRef)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function
 pgs_pc_getuniversalref(prodid,version,universalref)
 I nteger prodid
 integer version
 character*150 universalref

DESCRIPTION: This tool may be used to obtain a universal reference from a logical
identifier.

INPUTS: prodID-User defined constant identifier that internally represents the
current product.

version-Version of reference to get. Remember, for Product Input files and
Product Output files there can be a many-to-one relationship.

OUTPUTS: universalRef-The actual universal reference returned as a string.

RETURNS:
Table 6-65. PGS_PC_GetReference Returns

Return Description

PGS_S_SUCCESS successful execution
PGSPC_W_NO_REFERENCE_FOUND link number does not have the data that mode is requesting
PGSPC_E_DATA_ACCESS_ERROR problem while accessing PCS data
PGSPC_W_NO_UREF_DATA the product id and version contains no universal reference data

 6-189 333-EMD-001, Rev. 05

EXAMPLES:

C:
#define MODIS1A 2530

 PGSt_integer version;
char universalRef[PGSd_PC_UREF_LENGTH_MAX];
PGSt_SMF_status returnStatus;

 /# Get first version of the file #/
version = 1;

 returnStatus =
PGS_PC_GetUniversalRef(MODIS1A,version,universalRef);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{ /# perform necessary operations on file #/ }
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: IMPLICIT NONE

 integer version
character*150 universalRef
integer returnstatus
integer pgs_pc_getuniversalref
integer modis1a
parameter (modis1a = 2530)

C Get the first version of the file
version = 1

 returnstatus =
pgs_pc_getuniversalref(modis1a,version,referenceid)
if (returnstatus .ne. pgs_s_success)
 goto 9999
else

C perform necessary operations on file
 .
 .

 6-190 333-EMD-001, Rev. 05

 .
9999 return

NOTES: All reference identifier strings are guaranteed to be no greater than
PGSd_PC_UREF_LENGTH_MAX characters in length (see PGS_PC.h).

 The version returns the number of files remaining for the product group.
For example, if there are eight (8) versions of a file, when the user
requests version one (1) the value seven (7) is returned in version. When
the user requests version two (2) the value six (6) is returned in version,
etc. Therefore, it is not recommended to use version as a loop counter that
is also into PGS_PC_GetReference().

REQUIREMENTS: PGSTK-1290

 6-191 333-EMD-001, Rev. 05

Get Size of a File

NAME: PGS_PC_GetFileSize()

SYNOPSIS:

C: #include <PGS_PC.h>
#include <PGS_SMF.h>

 PGSt_SMF_status
PGS_PC_GetFileSize(
 PGSt_PC_Logical prodID,
 PGSt_integer version,
 PGSt_integer* filesize)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getfilesize(prodid,version,filesize)
 integer prodid,
 integer version,
 integer filesize)

DESCRIPTION: This tool may be used to obtain the size of a file from a logical identifier.

INPUTS: prodID-The logical identifier as defined by the user.
version - Version of reference to get.

OUTPUTS: filesize - The size of a file.

RETURNS:
Table 6-66. PGS_PC_GetFileSize Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_W_NO_REFERENCE_FOUND link number does not have the data that mode

is requesting
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data
PGS_E_UNIX Unix system error
PGS_E_TOOLKIT an unexpected error occurred

 6-192 333-EMD-001, Rev. 05

EXAMPLE:

C: #define PROD_ID 10501

PGSt_integer version;
PGSt_integer filesize;
PGSt_SMF_status returnStatus;

/# Get first version of the file #/
version = 1;

returnStatus =
PGS_PC_GetFileSize(PROD_ID,version,&filesize);

/# version now contains the number of versions remaining #/

if (returnStatus != PGS_S_SUCCESS
goto EXCEPTION;

else

{ /# perform necessary operations on file #/ }

.

.

.

EXCEPTION:

return returnStatus;

FORTRAN:

NOTES: In order for this tool to function properly, a valid Process Control file will
need to be created first. Please refer to Appendix C (User's Guide) for
instructions on how to create such a file.

REQUIREMENTS: PGSTK-1290

 6-193 333-EMD-001, Rev. 05

6.2.4 Shared Memory Management Tools

The tools described in this section provide for a limited use of shared memory amongst
executables within a PGE. These tools allow for the creation of a single user memory segment
within a PGE, and for the subsequent attachment and detachment of that memory segment to
another executable within the same PGE. Due to the way in which shared memory is accessed,
the APIs for the C and FORTRAN programming languages are necessarily different. C users
may directly manipulate the shared memory area but FORTRAN users are limited to copying to
and from the shared memory area via intermediary Toolkit functions. Note that the operation of
these tools is contingent on the assumption that the user will make proper use of the
initialization and termination commands that have been provided with this release of the
Toolkit (please note that the Memory Management initialization and termination routines
supplied with Toolkit 3 have been subsumed by corresponding Process Control commands
that MUST be invoked before and after the execution of the PGE respectively). The shell
utility PGS_PC_Shell.sh already activates the initialization and termination commands, so
user activation of these commands should not be performed if the shell utility is used.

 6-194 333-EMD-001, Rev. 05

Create Shared Memory Segment

NAME: PGS_MEM_ShmCreate()

SYNOPSIS:

C: #include <PGS_MEM1.h>

 PGSt_SMF_status
PGS_MEM_ShmCreate(
 PGSt_uinteger size);

FORTRAN: integer function pgs_mem_shmcreate(size)
integer size

DESCRIPTION: This tool may be used to create a shared memory segment. This tool
should only be called once in a given processing script (PGE).

INPUTS size-size of the shared memory segment in bytes

OUTPUTS: None

RETURNS:
Table 6-67. PGS_MEM_ShmCreate Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment Variable “PGSMEM_SHM_SYSKEY” is not set
PGSMEM_E_SHM_MAXSIZE Maximum system-imposed shared memory exceeded
PGSMEM_E_SHM_MULTICREATE More than one shared-memory is created for a given PGE

EXAMPLES:

C: typedef struct
{
 int id;
 char msg[100];
}TestStruct;

TestStruct *shmPtr;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_MEM_ShmCreate(sizeof(TestStruct);
if (returnStatus == PGS_S_SUCCESS)
{
 returnStatus = PGS_MEM_ShmAttach((void **)&shmPtr);

 6-195 333-EMD-001, Rev. 05

 if (returnStatus == PGS_S_SUCCESS)
 {
 shmPtr->id = 123;
 strcpy(shmPtr->msg,”Writing data into shared memory”);
 }
}

FORTRAN: integer pgs_mem_shmcreate

integer returnstatus
integer shm_size
character*100 test_string
shm_size = 100
test_string = “Writing data into shared memory”

 returnstatus = pgs_mem_shmcreate(shm_size)
if (returnstatus .eq. pgs_s_success) then
 returnstatus = pgs_mem_shmwrite(test_string, shm_size)
endif

 ! the contents of test_string have been written to shared
! memory which can be accesses by another process in the
! PGE

NOTES: This shared memory scheme is not A POSIX implementation and will
therefore be subjected to change when the POSIX.4 implementation is
available. System limitations will define the amount of memory that can
be allocated as a shared-memory segment. Only one memory segment
may be created per PGE; it may however be attached/detached as many
times as are required.

REQUIREMENTS: PGSTK-1241

 6-196 333-EMD-001, Rev. 05

Attach Shared Memory Segment

NAME: PGS_MEM_ShmAttach()

SYNOPSIS:

C: #include <PGS_MEM.h>

 PGSt_SMF_status
PGS_MEM_ShmAttach(
 void **shm);

FORTRAN: None

DESCRIPTION: This tool may be used by an executable to attach to an existing shared
memory segment. PGS_MEM_ShmCreate() should already be called,
either within the same executable or from an earlier executable within the
PGE. If the shared memory segment has been detached by calling
PGS_MEM_ShmDetach(), then you may re-attach the segment to your
process-space again.

INPUTS: shm-pointer referencing the shared memory segment

OUTPUTS: shm-pointer referencing the shared memory segment

RETURNS:
Table 6-68. PGS_MEM_ShmAttach Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not set
PGSMEM_E_SHM_NOTCREATE Shared-memory has not been attached to the process
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process

EXAMPLES: typedef struct
{
 int id;
 char msg[100];
}TestStruct;

 PGSt_SMF_status returnStatus;
TestStruct *shmPtr;

 6-197 333-EMD-001, Rev. 05

PROCESS A:

 returnStatus = PGS_MEM_ShmCreate(sizeof(TestStruct));
if (returnStatus == PGS_S_SUCCESS)
{
 returnStatus = PGS_MEM_ShmAttach((void **)&shmPtr);
 if (returnStatus == PGS_S_SUCCESS)
 {
 shmPtr->id = 123;
 strcpy(shmPtr->msg,”From Process A”);
 }
}

PROCESS B:

 returnStatus = PGS_MEM_ShmAttach((void **)&shmPtr);
if (returnStatus == PGS_S_SUCCESS)
{
 if ((shmPtr->id = 123) && (strcmp(shmPtr->msg,”From
 Process A”) == 0))
 {
 printf(“Reading data from Process A successful”);
 }
}

NOTES: Before using this function, PGS_MEM_ShmCreate() should have already
be called, either within the same executable or from an earlier executable
within the PGE. If the shared memory segment has been detached by
calling PGS_MEM_ShmDetach(), then you may re-attach the segment to
your process-space again.

 This tool lets the system select the memory location for your shared
memory, thereby allowing the system to make the best possible use of its
memory resources.

 This tool is not part of POSIX and is subjected to change when the
POSIX.4 implementation becomes available.

REQUIREMENTS: PGSTK-1241

 6-198 333-EMD-001, Rev. 05

Detach Shared Memory Segment

NAME: PGS_MEM_ShmDetach()

SYNOPSIS:

C: #include <PGS_MEM1.h>

 PGSt_SMF_status
PGS_MEM_ShmDetach(
 void);

FORTRAN: None

DESCRIPTION: This tool may be used to detach a shared memory segment from a process
that it has been attached to.

INPUTS: None

OUTPUTS: None

RETURNS:
Table 6-69. PGS_MEM_ShmDetach Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_NOTATTACH Shared-memory has not been attached to the process

EXAMPLES: typedef struct
{
 int id;
 char msg[100];
}TestStruct;

 PGSt_SMF_status returnStatus;
TestStruct *shmPtr;

 returnStatus = PGS_MEM_ShmCreate(sizeof(TestStruct));
if (returnStatus == PGS_S_SUCCESS)
{
 returnStatus = PGS_MEM_ShmAttach((void **)&shmPtr);
 if (returnStatus == PGS_S_SUCCESS)
 {
 shmPtr->id = 123;
 strcpy(shmPtr->msg,”Writing data into shared memory”);

 6-199 333-EMD-001, Rev. 05

 PGS_MEM_ShmDetach();
 }
}

NOTES: Note that this tool is not part of POSIX and is subjected to change when
the POSIX.4 implementation becomes available. This function will only
detach the shared memory segment from the process. The shared memory
segment will not be removed from the system by calling this tool;
therefore one can re-attach it again.

REQUIREMENTS: PGSTK-1241

 6-200 333-EMD-001, Rev. 05

Read from Shared Memory Segment

NAME: PGS_MEM_ShmRead()

SYNOPSIS:

C: None

FORTRAN: include ‘PGS_SMF.f
include ‘PGS_MEM_9.f’

 integer function pgs_mem_shmread(mem_ptr, size)
 integer size
 character mem_ptr(size)

DESCRIPTION: This function copies the contents of shared memory into a user allocated
(may be dynamically or statically allocated) memory area. This function is
meant to be used by FORTRAN (77/90) users who cannot take advantage
of the C shared memory tools PGS_MEM_ShmAttach() and
PGS_MEM_ShmDetach().

INPUTS:
Table 6-70. PGS_MEM_ShmRead Inputs

Name Description

size size (in bytes) of mem_ptr (see below)

OUTPUTS:

Table 6-71. PGS_MEM_ShmRead Outputs
Name Description

mem_ptr array or structure to which the contents of the shared
memory area will be written

RETURNS:
Table 6-72. PGS_MEM_ShmRead Returns

Return Description

PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not set
PGSMEM_E_SHM_NOTCREATE User defined shared-memory has not been created
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process
PGSMEM_E_SHM_NOTATTACH Failed to attach shared memory to this process shared-memory

 6-201 333-EMD-001, Rev. 05

EXAMPLES:

FORTRAN: integer pgs_mem_shmread

integer size

 character shm_buffer(1000)

 integer returnstatus

returnstatus = pgs_mem_shmread(shm_buffer, size)

if (returnstatus .ne. pgs_s_success) goto 999

 ! the contents of shared memory (which may contain data
! from a previous process) have been copied to shm_buffer

 999 continue ! process error conditions

NOTES: This tool is meant to be used by FORTRAN (77/90) users ONLY. C users
should use the functions PGS_MEM_ShmAttach() and
PGS_MEM_ShmDetach().

The tool PGS_MEM_ShmCreate() MUST be called before
PGS_MEM_ShmRead() is invoked.

This tool is not part of POSIX and is subjected to change when the
POSIX.4 implementation becomes available.

The user passes in a pointer to a user defined memory area (an area of
memory which has been either statically or dynamically allocated by the
user) and the size of that area. This function will retrieve the pointer to the
shared memory area and copy the contents of the shared memory into the
users memory area. This function will then detach the shared memory
from the current process. Before exiting from the PGE, the system will
make sure that the attached shared memory segment will be removed from
the system.

REQUIREMENTS: PGSTK-1241

 6-202 333-EMD-001, Rev. 05

Write to Share Memory Segment

NAME: PGS_MEM_ShmWrite()

SYNOPSIS:

C: None

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_MEM_9.f’

 integer function pgs_mem_shmwrite(mem_ptr, size)
integer size
character mem_ptr(size)

DESCRIPTION: This function copies the contents of a user allocated (may be dynamically
or statically allocated) memory area into shared memory. This function is
meant to be used by FORTRAN (77/90) users who cannot take advantage
of the C shared memory tool PGS_MEM_ShmAttach() and
PGS_MEM_ShmDetach().

INPUTS:
Table 6-73. PGS_MEM_ShmWrite Inputs

Name Description
mem_ptr array or structure the contents of which will be written

to the shared memory area
size size (in bytes) of mem_ptr (see above)

OUTPUTS: NONE

RETURNS:
Table 6-74. PGS_MEM_ShmWrite Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not set
PGSMEM_E_SHM_NOTCREATE User defined shared-memory has not been created
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process
PGSMEM_E_SHM_NOTATTACH Failed to attach shared memory to this process shared-

memory

 6-203 333-EMD-001, Rev. 05

EXAMPLES:

FORTRAN: integer pgs_mem_shmwrite

 integer size
integer returnstatus

character shm_buffer(1000)

! fill shm_buffer with interesting data

returnstatus = pgs_mem_shmwrite(shm_buffer, size)

if (returnstatus .ne. pgs_s_success) goto 999

 ! the contents of shm_buffer have been written to the
! shared memory area which can be accessed by a subsequent
! process

 999 continue ! process error conditions

NOTES: This tool is meant to be used by FORTRAN (77/90) users ONLY. C users
should use the functions PGS_MEM_ShmAttach() and
PGS_MEM_ShmDetach().

The tool PGS_MEM_ShmCreate() MUST be called before
PGS_MEM_ShmWrite() is invoked.

This tool is not part of POSIX and is subjected to change when the
POSIX.4 implementation becomes available.

The user passes in a pointer to a user defined memory area (an area of
memory which has been either statically or dynamically allocated by the
user) and the size of that area. This function will retrieve the pointer to the
shared memory area and write the contents of the users memory area to
the shared memory area OVERWRITING whatever was previously in the
shared memory area. This function will then detach the shared memory
from the current process. Before exiting from the PGE, the system will
make sure that the attached shared memory segment will be removed from
the system.

REQUIREMENTS: PGSTK-1241

 6-204 333-EMD-001, Rev. 05

6.2.5 Bit Manipulation Tools

It is assumed that bit-manipulation functionality will be provided inherently by the language for
‘C’ and Fortran90 and that users of Fortran77 will use compilers that conform to MIL STD 1753
to obtain these capabilities.

6.2.6 Spacecraft Ephemeris and Attitude Data Access Tools

This tool group contains tools and associated software that provides access to the spacecraft
ephemeris and attitude at a given time. Currently the EOS_AM, EOS_PM, EOS_AURA and
TRMM platforms are supported. In this release of the Toolkit, orbit and attitude data for testing
is supplied by the ECS Spacecraft Orbit and Attitude Simulator. Both binary and HDF formats
for orbit and attitude data is supported. The binary orbit and attitude data files can be produced
on a platform of “big” or “little” endian type. Toolkit will swap the eph and att data after reading
binary files if data files endianness do not agree with the platform’s endianness.

6.2.6.1 Orbit and Attitude Simulator

The ECS Spacecraft Orbit and Attitude Simulator is based on Upper Atmosphere Research
Satellite (UARS) FORTRAN code. It has been completely rewritten in C and revised for EOS.

6.2.6.1.1 Brief Description

The spacecraft orbit simulator orbsim will create files (binary and HDF) of simulated spacecraft
orbit and attitude data necessary to test the SDP Toolkit spacecraft ephemeris and attitude data
access tool (PGS_EPH_EphemAttit()) in the SCF environment. For platforms such as DEC
alpha and PC the binary files will be substituted automatically with the big-endian binary type
data files contained in the testdriver tar file upon running the test shell script runTest. This is for
testing cross endiannes of data files and test platform. Users may alternatively create their own
data files, either on a big-endian or little-endian machines, but MUST follow the ECS ephemeris
and attitude file formats.

WARNING: this simulator uses a relatively simple algorithm and is meant to produce data for
software testing ONLY. This data should not be used for any actual processing or for prediction
purposes.

6.2.6.1.2 The SCF Environment

At the DAACs the users will be responsible for submitting the criteria upon which ephemeris
and attitude files will be staged for their PGE. The DAACs will populate the Process Control
File (PCF) appropriately based on this user supplied criteria. In the SCF environment users must
populate the PCF with appropriate ephemeris and attitude data files themselves. No tools that
require access to spacecraft ephemeris data will function without these ephemeris and attitude
files. An ephemeris file and an attitude file must be provided for any time during which
processing will be requested.

 6-205 333-EMD-001, Rev. 05

The PCF file provided with the Toolkit contains the Logical IDs which have been reserved for
the ephemeris and attitude data files. There is one Logical ID for each type of data and the
appropriate Logical ID MUST be used for each set of ephemeris and attitude files of type binary
or HDF. Replace the dummy values in the PCF with the actual location of the ephemeris and
attitude files to be used. Use the given ephemeris file Logical ID for all ephemeris data files and
the given attitude file Logical ID for all attitude files. To include multiple files of either type use
file versioning. The order of the files is not important, the ephemeris and attitude access tool will
sort the files before attempting to access them (WARNING: providing files with overlapping
start/stop times may produce unexpected results).

The unconfigured ephemeris and attitude Logical ID entries in the PCF look as follows
(respectively):

10501|INSERT_EPHEMERIS_FILES_HERE|||||1
10502|INSERT_ATTITUDE_FILES_HERE|||||1

The configured entries should look something like this:

10501|EOSAM1_1995-07-01_12h_01.eph|~/database/sun5/EPH||||5
10501|EOSAM1_1995-07-01_12h_02.eph|~/database/sun5/EPH||||4
10501|TRMM_1994-01-12.eph|~/database/sun5/EPH||||3
10501|TRMM_1994-01-13.eph|~/database/sun5/EPH||||2
10501|TRMM_1994-01-14.eph|~/database/sun5/EPH||||1
10502|EOSAM1_1995-07-01_12h_01.att|~/database/sun5/EPH||||5
10502|EOSAM1_1995-07-01_12h_02.att|~/database/sun5/EPH||||4
10502|TRMM_1994-01-12.att|~/database/sun5/EPH||||3
10502|TRMM_1994-01-13.att|~/database/sun5/EPH||||2
10502|TRMM_1994-01-14.att|~/database/sun5/EPH||||1

or the following if HDF files are used:

10501|EOSAM1_1995-07-01_12h_01.eph.hdf|~/database/sun5/EPH||||5
10501|EOSAM1_1995-07-01_12h_02.eph.hdf|~/database/sun5/EPH||||4
10501|TRMM_1994-01-12.eph.hdf|~/database/sun5/EPH||||3
10501|TRMM_1994-01-13.eph.hdf|~/database/sun5/EPH||||2
10501|TRMM_1994-01-14.eph.hdf|~/database/sun5/EPH||||1
10502|EOSAM1_1995-07-01_12h_01.att.hdf|~/database/sun5/EPH||||5
10502|EOSAM1_1995-07-01_12h_02.att.hdf|~/database/sun5/EPH||||4
10502|TRMM_1994-01-12.att.hdf|~/database/sun5/EPH||||3
10502|TRMM_1994-01-13.att.hdf|~/database/sun5/EPH||||2
10502|TRMM_1994-01-14.att.hdf|~/database/sun5/EPH||||1

See Section 6.2.3 Process Control Tools for a discussion of the PCF and file versioning.

 6-206 333-EMD-001, Rev. 05

6.2.6.1.3 Running the Orbit/Attitude Simulator

The executable orbsim is installed in the $PGSBIN directory at installation time. Make sure the
$PGSBIN directory is in your path. To run the program, type “orbsim” at the command line
prompt (from any directory).

The simulator is self-explanatory (if you read the messages on the screen). A “q” may be entered
at any prompt to quit the simulator. At most prompts there will be a default value that can be
selected by merely returning at the prompt without typing any characters. These default values
will be indicated by “[]” (e.g., enter a number [7]:).

The first prompt will request the spacecraft ID. The supported values for this are: TRMM,
EOS_AM, EOS_PM and EOS_AURA.

The second prompt asks whether HDF files to be generated.

The next prompt will ask users to change orbital elements. Users are given the selection to
change the first seven orbital element values. All values should be real numbers, except for the
epoch time, which should be in CCSDS ASCII time code. If users do not change orbital
elements, the default values will be used. If users change them, the values are overwritten. The
fourth prompt will request the start time. Enter the start time in CCSDS ASCII time code (format
A or B-see Time and Date Conversion Tools). If users enter only date portion (e.g., 1995-10-20)
or date and midnight time (e.g., 1995-10-20T00:00:00), the time starts from midnight. If users
enter date and noontime (e.g., 1995-10-20T12:00:00), the time starts from noon. The fifth
prompt will request the stop time that should be entered using the same format as the start time.
The stop time must be later than the start time. If users only enter date portion, the start and stop
time are inclusive (e.g., entering the same start and stop date (e.g., 1995-10-20) will create the
spacecraft ephemeris file for that day). The sixth prompt will request the data (or time) interval
in seconds. This number is a real number that represents the time interval between data records
in the file. These times represent actual ephemeris data. This data will be returned to users
directly through PGS_EPH_EphemAttit(). Ephemeris data requested at times other than the
actual record times will be interpolated. The next prompt will ask users to input the time in hour
for the data file. The simulator only accepts the divisions of 24 (1, 2, 3, 4, 6, 12, 24). The default
value is 24 hours. If users do not enter a value, a whole day data file of 24 hours will be created.
Otherwise, the value will be overwritten. Then the simulator will display the start and stop day
and time interval entered, as well as the total size (in megabytes) of the data files that will be
created. The simulator will then request confirmation of these input values. If the values are
rejected the simulator will request the information again beginning with the start day until the
values are accepted.

Once the time information has been entered and confirmed the simulator will issue a prompt
requesting attitude “noise”. This simulator does not allow for any specific yaw, pitch or roll
variation, however attitude noise may be introduced to simulate small random variations in the
yaw, pitch and roll data reported. At the noise prompt the maximum desired amplitude in
arcseconds of the noise should be entered. This should be entered as a real number whose
magnitude is LESS than 1000.0 arcseconds (only the magnitude will be considered; the sign of

 6-207 333-EMD-001, Rev. 05

the number will be ignored). The next prompt will be for attitude rate noise. This should be
entered as a real number whose magnitude is LESS than 1000.0 arcseconds/second. Entering
“N” at the first prompt (for attitude noise) will turn off this feature; and the roll, pitch and yaw
will always be reported as exactly zero. No noise is the default behavior.

The simulator will then prompt for the directory where the ephemeris and attitude files it
generates should be written to. The default installation directory is determined from the location
of the file leapsec.dat which is assumed to be in $PGSDAT/TD, the simulator will then define
the default directory as $PGSDAT/EPH. The location of the output directory is not significant to
the tool PGS_EPH_EphemAttit() in any way. The simulator will issue a prompt indicating the
default location and asking that the installation directory be specified. Any valid directory may
be specified at this prompt (a relative path may be used). The default directory can be selected by
merely entering return at this prompt. If an invalid directory is entered the prompt will be
reissued until a valid directory is entered.

After a valid directory has been indicated the simulator will attempt to create the spacecraft
ephemeris and attitude files for the times requested. The simulator will generate one file each of
ephemeris data and attitude data for each date specified. The files generated will follow the
naming convention <sc_name>_<date>.eph and <sc_name>_<date>.att for ephemeris and
attitude files respectively. The file names and lengths generated by the simulator are for
convenience only. Ephemeris and attitude data files may actually have any name and be of any
time duration. However, because of the simulator convention of one ephemeris file and one
attitude file per day, the simulator will NOT overwrite an existing file for the same spacecraft
and the same day, an error message will be issued and the file(s) will be skipped. If for any other
reason a file cannot be created the simulator will issue an error message and a prompt asking
whether or not it should continue. If directed to continue, the simulator will try one more time to
create the file and then continue on to the next file without further warning whether or not the
file could be created. The most likely scenario for this is when the user does not have write
permission for the directory specified. The above mentioned prompt allows the user to change
the directory permission and continue. If the simulator is unable to write to a file that it has
already opened (e.g., the disk is full) an error message will be issued.

When all files requested have been written (or skipped), a final prompt is issued allowing the
whole process to be repeated.

6.2.6.1.4 Spacecraft Ephemeris and Attitude File Formats

See Appendix L (ECS Spacecraft Ephemeris and Attitude File Formats)

6.2.6.1.5 Tools that Require Spacecraft Ephemeris Files
 PGS_EPH_EphemAttit()

PGS_EPH_GetEphMet()
PGS_EPH_EphAtt_unInterpolate()
PGS_EPH_UnInterpEphAtt()
PGS_CBP_body_inFOV()
PGS_CBP_Sat_CB_Vector()

 6-208 333-EMD-001, Rev. 05

PGS_CSC_GetFOV_Pixel()
PGS_CSC_SubSatPoint()
PGS_CSC_Earthpt_FOV()
PGS_CSC_Earthpt_FixedFOV()
PGS_CSC_ECItoORB()
PGS_CSC_ORBtoECI()
PGS_CSC_ECItoSC()
PGS_CSC_SCtoECI()
PGS_CSC_ORBtoSC()
PGS_CSC_SCtoORB()

6.2.6.1.6 Warning

The files created by the simulator can be very large and keeping many of them around can
quickly fill a hard drive (one day of orbit data for EOS_AM at the default time interval is nearly
nine megabytes). The size of the files can be reduced by choosing larger time intervals between
data records.

This tool will create files for time in the far future or distant past if the user specifies them. The
time of each record in spacecraft ephemeris and attitude files is kept in SDP Toolkit internal time
(see Time and Date Conversion Tools) which is a form of TAI time. The user will not be notified
if the file created is outside the times for which TAI is defined or currently known (relative to a
corresponding UTC time). The simulator will estimate the time and create the file. Such files
may contain TAI times on fractional UTC second centers, due to the approximate estimation of
TAI-UTC.

6.2.6.2 Ephemeris File Checker

The ECS Spacecraft Ephemeris File Checker can be used to check the format of exiting
spacecraft ephemeris files and/or attitude files. This is useful for verifying that an ephemeris file
or an attitude file created by a user (i.e., not using the ECS Spacecraft Orbit and Attitude
Simulator) is properly formatted. The Ephemeris File Checker is also useful in checking on the
time resolution and spacecraft ID of an existing spacecraft ephemeris file or attitude file, as well
as in detecting files created without valid leap second data (see Sect. 6.2.6.1.6).

6.2.6.2.1 Brief Description

The spacecraft ephemeris file checker (chkeph) will check the contents of spacecraft ephemeris
and attitude files. The checker will read the file header and verify that the metadata contained
therein is reasonable. If the header checks out, the checker will then check each record in the file
to verify that the times are properly specified (i.e., that the records are properly spaced in time).

6.2.6.2.2 Running the Ephemeris File Checker

The executable chkeph is installed in the $PGSBIN directory at installation time. Make sure the
$PGSBIN directory is in your path. To run the program type “chkeph” at the prompt with the
name(s) of any file(s) to be checked, e.g.,

 6-209 333-EMD-001, Rev. 05

chkeph TRMM_1998-02-01.eph TRMM_1998-02-02.eph

If the file to be checked is not in the same directory as the one from which chkeph was invoked,
the path name must be specified as well (e.g., chkeph ../EPH/TRMM_1998-02-02.eph).

For each file specified chkeph will print out the data contained in the header and check the data
records. The first line printed will be the name of the spacecraft and the corresponding numeric
value of the Toolkit spacecraft ID (if the spacecraft is an ECS supported s/c). The next two lines
will be the numeric start and stop times (respectively) indicated in the header in internal time.
Each time will be followed on the same line with the CCSDS ASCII Code (format A)
representation of the equivalent UTC time. The next line will be the time interval. Note that this
quantity is for record keeping only (i.e., the value has no effect on Toolkit operation). Users
creating their own files (i.e., without using the orbsim utility--see above) may set this field to any
value. The next line will be the number of records expected to be in the file based on the number
of records specified in the file header. The first record will be checked to verify that the time of
the record is the same as the time specified as the start time in the file header. Each subsequent
record will then be checked to verify that the time of the record is greater than the time of the
record immediately preceding it. The last record in the file will be checked to verify that the time
of the record is the same as the time specified as the stop time in the file header. The Ephemeris
File Checker will issue appropriate error messages if it finds anomalies in the contents of the file
that it is checking.

6.2.6.3 Spacecraft Tags Definition File

As of Toolkit 5.2, spacecraft tags are no longer “hard-coded”. Spacecraft tags are defined in an
ASCII data file and looked up at runtime. This allows the Toolkit geolocation tools to
effectively support any spacecraft that has had it’s ephemeris and attitude data formatted for the
Toolkit (see Appendix L. Ephemeris And Attitude File Formats). The spacecraft tags definition
file is referenced via the Process Control File with the logical ID of 10801. The file contains a
series of records (one per line) of the form:

<sc_tag>,<sc_name>,<eao>

Where:

<sc_tag> is the numerical (integer) value of the spacecraft tag (passed to Toolkit functions).
<sc_name> is the actual name of the spacecraft as contained in the ephemeris/attitude file
 header.
<eao> is a string consisting of three digits describing the order of the Euler angles (e.g.:
 321, 312, 212) as contained in the attitude file.

As delivered the Tookit is configured to support the TRMM, EOS-AM1, EOS-PM and EOS-
AURA platforms. These entries in the spacecraft tags file should not be altered. Additional
entries may be added below these entries. Each entry should have a unique <sc_name> and
<sc_tag>. To ensure backward compatibility, the previous implementation of spacecraft tags has
been retained in the Toolkit software. That is, if the tag is TRMM, EOS-AM1, EOS_PM or
EOS_AURA and the Spacecraft Tags Definition File is not found, the Toolkit will execute the
old “hard coded’ method.

 6-210 333-EMD-001, Rev. 05

Get Ephemeris and Attitude

NAME: PGS_EPH_EphemAttit()

SYNOPSIS:

C: #include <PGS_EPH.h>

 PGSt_SMF_status
PGS_EPH_EphemAttit(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_boolean orbFlag,
 PGSt_boolean attFlag,
 PGSt_integer qualityFlags[][2],
 PGSt_double positionECI[][3],
 PGSt_double velocityECI[][3],
 PGSt_double eulerAngles[][3],
 PGSt_double xyzRotRates[][3],
 PGSt_double attitQuat[][4])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’
include ‘PGS_EPH_5.f’

 integer function pgs_eph_ephemattit(spacecrafttag,numvalues,asciiutc,
 offsets,orbflag,attflag,qualityflags,
 positioneci,velocityeci,eulerangles,
 xyzrotrates,attitquat)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer orbflag
 integer attflag
 integer qualityflags(2,*)
 double precision positioneci(3,*)
 double precision velocityeci(3,*)
 double precision eulerAngles(3,*)
 double precision xyzrotrates(3,*)
 double precision attitquat(4,*)

 6-211 333-EMD-001, Rev. 05

DESCRIPTION: This tool gets ephemeris and/or attitude data for the specified spacecraft at
the specified times.

INPUTS:
Table 6-75. PGS_EPH_EphemAttit Inputs

Name Description Units Min Max
spacecraftTag spacecraft identifier N/A
numValues num. Of values requested N/A
asciiUTC UTC time reference start time in

CCSDS ASCII time code A format
ASCII 1961-01-01 see NOTES

offsets array of time offsets in seconds
relative to asciiUTC

seconds depends on asciiUTC

orbFlag set to true to get ephemeris data T/F
attFlag set to true to get attitude data T/F

OUTPUTS:
Table 6-76. PGS_EPH_EphemAttit Outputs

Name Description Units
qualityFlags quality flags for position and attitude data see NOTES
positionECI ECI position meters
velocityECI ECI velocity meters/sec
eulerAngles s/c attitude as a set of Euler angles radians
xyzRotRates angular rates about body x, y and z axes radians/sec
attitQuat spacecraft to ECI rotation quaternion N/A

RETURNS:
Table 6-77. PGS_EPH_EphemAttit Returns

Return Description
PGS_S_SUCCESS Successful return
PGSEPH_W_BAD_EPHEM_VALUE One or more values could not be determined
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephemeris/attitude files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephemeris/attitude files could be found for input times
PGSEPH_E_NO_DATA_REQUESTED Both orbit and attitude flags are set to false
PGSTD_E_SC_TAG_UNKNOWN Unrecognized/unsupported spacecraft tag
PGSEPH_E_BAD_ARRAY_SIZE Array size specified is less than 0
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for initial time (asciiUTC)
PGS_E_TOOLKIT An unexpected error occurred

 6-212 333-EMD-001, Rev. 05

EXAMPLES:

C: #define ARRAY_SIZE 10

 PGSt_double offsets[ARRAY_SIZE];
PGSt_double positionECI[ARRAY_SIZE][3];
PGSt_double velocityECI[ARRAY_SIZE][3];
PGSt_double eulerAngles[ARRAY_SIZE][3];
PGSt_double xyzRotRates[ARRAY_SIZE][3];
PGSt_double attitQuat[ARRAY_SIZE][4];

 char asciiUTC[28];

 PGSt_integer qualityFlags[ARRAY_SIZE][2];

 int I;

 PGSt_SMF_status returnStatus;

** initialize asciiUTC and offsets array **

 strcpy(asciiUTC,”1998-02-03T19:23:45.123”);
for (I=0;I<ARRAY_SIZE;I++)
 offsets[I] = (PGSt_double) I;

 returnStatus = PGS_EPH_EphemAttit(PGSd_EOS_AM, numValues,
 asciiUTC, offsets, PGS_TRUE, PGS_TRUE,
 qualityFlags, positionECI, velocityECI,
 eulerAngles, xyzRoteRates, attitQuat);

 if (returnStatus != PGS_S_SUCCESS)
{
 :
** do some error handling **
 :
}

FORTRAN: integer numvalues/10/
integer I
integer returnstatus
integer qualityflags(2,numvalues)

 character*27 asciiutc

 double precision offsets(numvalues)
double precision positioneci(3,numvalues)
double precision velocityeci(3,numvalues)
double precision eulerangles(3,numvalues)

 6-213 333-EMD-001, Rev. 05

double precision xyzrotrates(3,numvalues)
double precision attitquat(4,numvalues)

C initialize asciiutc and offsets array

 asciiutc = ‘1998-02-03T19:23:45.123’
do 100 I = 1,numvalues

offsets(I) = I-1

 returnstatus = pgs_eph_ephemattit(pgsd_eos_am,numvalues,
> asciiutc,offsets,pgs_true,
> pgs_true,attflag,
> qualityflags,positioneci,
> velocityeci,eulerangles,
> xyzroterates,attitquat)

 if (returnstatus .ne. pgs_s_success) then
 :
*** do some error handling ***
 :
endif

NOTES: The Euler angles are always relative to the geocentrically based
orbital reference frame The attitude rates for TRMM are relative to
geodetic orbital reference. The attitude rates for AM1 and later
spacecraft are relative to inertial (J2000) reference. In all cases, the
attitude rates are the spacecraft angular velocity vector projected on
the body axes.

QUALITY FLAGS:

 The quality flags are returned as integer quantities but should be
interpreted as bit fields. Only the first 32 bits of each quality flag is
meaningfully defined, any additional bits should be ignored (currently
integer quantities are 32 bits on most UNIX platforms, but this is not
guaranteed to be the case—e.g. an integer is 64 bits on a Cray).

Generally the quality flags are platform specific and are not defined by the
Toolkit. Two bits of these flags have, however, been reserved for SDP
Toolkit usage. Bit 12 will be set by the Toolkit if no data is available at a
requested time, bit 14 will be set by the Toolkit if the data at the requested
time has been interpolated (the least significant bit is “bit 0”). Any other
bits are platform specific and are the responsibility of the user to interpret.
See also Section L.3 (Quality Flags).

 See Section 6.2.7.1 (Time Acronyms)

 See Section 6.2.7.2 (ASCII Time Formats)

 6-214 333-EMD-001, Rev. 05

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

See Appendix L (ECS Spacecraft Ephemeris and Attitude File Formats)

 TIME OFFSETS:

 This function accepts an ASCII UTC time, an array of time offsets and the
number of offsets as input. Each element in the offset array is an offset in
seconds relative to the initial input ASCII UTC time.

 An error will be returned if the number of offsets specified is less than
zero. If the number of offsets specified is actually zero, the offsets array
will be ignored. In this case the input ASCII UTC time will be converted
to Toolkit internal time (TAI) and this time will be used to process the
data. If the number of offsets specified is one (1) or greater, the input
ASCII UTC time will be converted to TAI and each element ‘I’ of the
input data will be processed at the time: (initial time) + (offset[I]).

 Examples:

if numValues is 0 and asciiUTC is “1993-001T12:00:00” (TAI:
432000.0), then input[0] will be processed at time 432000.0 and
return output[0]

if numValues is 1 and asciiUTC is “1993-001T12:00:00” (TAI:
432000.0), then input[0] will be processed at time 432000.0 +
offsets[0] and return output[0]

if numValues is N and asciiUTC is “1993-001T12:00:00” (TAI:
432000.0), then each input[I] will be processed at time 432000.0 +
offsets[I] and the result will be output[I], where I is on the interval
[0,N) ([1,N] in the case of FORTRAN)

ERROR HANDLING:

This function processes data over an array of times (specified by an input
ASCII UTC time and an array of time offsets relative to that time).

If processing at each input time is successful the return status of this
function will be PGS_S_SUCCESS (status level of ‘S’).

If processing at ALL input times was unsuccessful the status level of the
return status of this function will be ‘E’.

If processing at some (but not all) input times was unsuccessful the status
level (see SMF) of the return status of this function will be ‘W’ AND all
high precision real number (C: PGSt_double, FORTRAN: DOUBLE
PRECISION) output variables that correspond to the times for which
processing was NOT successful will be set to the value:
PGSd_GEO_ERROR_VALUE. In this case users may (should) loop

 6-215 333-EMD-001, Rev. 05

through the output testing any one of the aforementioned output variables
against the value PGSd_GEO_ERROR_VALUE. This indicates that there
was an error in processing at the corresponding input time and no useful
output data was produced for that time.

Note: A return status with a status of level of ‘W’ does not necessarily
mean that some of the data could not be processed. The ‘W’ level may
indicate a general condition that the user may need to be aware of but that
did not prohibit processing. For example, if an Earth ellipsoid model is
required, but the user supplied value is undefined, the WGS84 model will
be used, and processing will continue normally, except that the return
status will be have a status level of ‘W’ to alert the user that the default
earth model was used and not the one specified by the user. The reporting
of such general warnings takes precedence over the generic warning (see
RETURNS above) that processing was not successful at some of the
requested times. Therefore in the case of any return status of level ‘W,’ the
returned value of a high precision real variable generally should be
examined for errors at each time offset, as specified above.

Special Note: for this tool, the associated quality flags will also indicate
that no data is available for those points that could not be successfully
processed (see QUALITY FLAGS above).

REQUIREMENTS: PGSTK-0720, PGSTK-0141

 6-216 333-EMD-001, Rev. 05

Get Ephemeris and Attitude Records Without interpolation

NAME: PGS_EPH_EphAtt_unInterpolate()

PGS_EPH_UnInterpEphAtt()

SYNOPSIS:

C: #include <PGS_EPH.h>
 PGSt_SMF_status

PGS_EPH_UnInterpEphAtt(
 PGSt_tag spacecraftTag,
 char *asciiUTC_start,
 char *asciiUTC_stop,
 PGSt_boolean orbFlag,
 PGSt_boolean attFlag,
 PGSt_integer qualityFlag[][2],
 PGSt_integer numValuesEph,

PGSt_integer numValuesAtt,
 char asciiUTC_Eph[][28],

char asciiUTC_Att[][28],
 PGSt_double positionECI[][3],
 PGSt_double velocityECI[][3],
 PGSt_double eulerAngles[][3],
 PGSt_double xyzRotRates[][3],
 PGSt_double attitQuat[][4])

PGSt_SMF_status
PGS_EPH_EphAtt_unInterpolate(
 PGSt_tag spacecraftTag,
 char *asciiUTC_start,
 char *asciiUTC_stop,
 PGSt_boolean orbFlag,
 PGSt_boolean attFlag,
 PGSt_integer qualityFlag[][2],
 PGSt_integer numValues,
 char asciiUTC_UnAtt[][28],
 PGSt_double positionECI[][3],
 PGSt_double velocityECI[][3],
 PGSt_double eulerAngles[][3],
 PGSt_double xyzRotRates[][3],
 PGSt_double attitQuat[][4])

 6-217 333-EMD-001, Rev. 05

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’
include ‘PGS_EPH_5.f’

integer function pgs_eph_uninterpephatt(spacecrafttag, asciitcstart,
asciiutcstop, orbflag, attflag, qualityflags, numvalueseph,
numvaluesatt,asciiutceph, asciiutcatt, positioneci, velocityeci,
eulerangles, xyzrotrates, attitquat)
integer spacecrafttag

 character*27 asciiutcstart
 character*27 asciiutcstop
 integer orbflag
 integer attflag
 character asciiutceph(28,*)

character asciiutcatt(28,*)
 integer numvalueseph

integer numvaluesatt
 integer qualityflags(2,*)
 double precision positioneci(3,*)
 double precision velocityeci(3,*)
 double precision eulerAngles(3,*)
 double precision xyzrotrates(3,*)
 double precision attitquat(4,*)

integer function pgs_eph_ephatt_uninterpolate(spacecrafttag,
asciitcstart, asciiutcstop, orbflag, attflag, qualityflags, numvalues,
asciiutcephatt, positioneci, velocityeci, eulerangles, xyzrotrates,
attitquat)
integer spacecrafttag

 character*27 asciiutcstart
 character*27 asciiutcstop
 integer orbflag
 integer attflag
 character asciiutcephatt(28,*)
 integer numvalues
 integer qualityflags(2,*)
 double precision positioneci(3,*)
 double precision velocityeci(3,*)
 double precision eulerAngles(3,*)
 double precision xyzrotrates(3,*)
 double precision attitquat(4,*)

DESCRIPTION: These tools get actual (without interpolation) ephemeris and/or attitude
data records for the specified spacecraft between two specified times. The
tool PGS_EPH_EphAtt_unInterpolate() cannot extract both ephemeris and

 6-218 333-EMD-001, Rev. 05

attitude data records if their numbers are different in the specified time
period. Howerver, the tool PGS_EPH_UnInterpEphAtt() which wrapes
around PGS_EPH_EphAtt_unInterpolate() can return both records
regardless of the difference in number of ephemeris and attitude data
records. This tool only will not be able to calculate and return attitude
quaternion when the number of ephemeris and attitude data records differ.

INPUTS:
Table 6-78. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Inputs

Name Description Units Min Max
spacecraftTag spacecraft identifier N/A
asciiUTC_start UTC time reference start time in CCSDS

ASCII time code A format
ASCII 1961-01-01 See Notes

asciiUTC_stop UTC time reference stop time in CCSDS
ASCII time code A format

ASCII 1961-01-01 See Notes

OrbFlag set to true to get ephemeris data T/F
AttFlag set to true to get attitude data T/F
numValues Max number of expected eph/att records
numValuesEph Max number of expected eph records
numValuesAtt Max number of expected att records

OUTPUTS:
Table 6-79. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Outputs

Name Description Units Min Max
numValues Number of eph/att values between start

and stop times

NumValuesEph Number of eph values between start and
stop times

numValuesAtt Number of att values between start and
stop times

asciiUTC_EphAtt UTC time reference for eph/att records
in CCSDS ASCII time code A format

ASCII 1961-01-01 See Notes

asciiUTC_Eph UTC time reference for eph records in
CCSDS ASCII time code A format

ASCII 1961-01-01 See Notes

asciiUTC_Att UTC time reference for att records in
CCSDS ASCII time code A format

ASCII 1961-01-01 See Notes

qualityFlags quality flags for position and attitude
data

See Notes

positionECI ECI position meters
velocityECI ECI velocity meters/sec
eulerAngles s/c attitude as a set of Euler angles radians
xyzRotRates angular rates about body x, y and z axes radian/sec
AttitQuat spacecraft to ECI rotation quaternion N/A

 6-219 333-EMD-001, Rev. 05

RETURNS:
Table 6-80. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Returns

Return Description
PGS_S_SUCCESS Successful return
PGSEPH_W_BAD_EPHEM_VALUE One or more values could not be determined
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephemeris/attitude files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephemeris/attitude files could be found for input

times
PGSEPH_E_NO_DATA_REQUESTED Both orbit and attitude flags are set to false
PGSTD_E_SC_TAG_UNKNOWN Unrecognized/unsupported spacecraft tag
PGSEPH_E_BAD_ARRAY_SIZE Array size specified is less than 0
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for initial time

(asciiUTC)
PGS_E_TOOLKIT An unexpected error occurred

EXAMPLES:
C: #define ARRAY_SIZE 10

PGSt_integer numValueseph=ARRAY_SIZE;
PGSt_integer numValuesatt=ARRAY_SIZE;

PGSt_double positionECI[ARRAY_SIZE][3];
PGSt_double velocityECI[ARRAY_SIZE][3];
PGSt_double eulerAngles[ARRAY_SIZE][3];
PGSt_double xyzRotRates[ARRAY_SIZE][3];
PGSt_double attitQuat[ARRAY_SIZE][4];
char asciiUTC_start[28];
char asciiUTC_stop[28];
char asciiUTC_Eph[ARRAY_SIZE][28];
char asciiUTC_Att[ARRAY_SIZE][28];
PGSt_integer qualityFlags[ARRAY_SIZE][2];
PGSt_SMF_status returnStatus;
/*initialize asciiUTC start and stop times */
strcpy(asciiUTC_start,”1998-0203T19:23:45.123”);
strcpy(asciiUTC_start,”1998-02-03T20:23:45.123”);
returnStatus = PGS_EPH_UnInterpEphAtt(PGSd_EOS_AM,
asciiUTC_start, asciiUTC_stop, PGS_TRUE, PGS_TRUE,
qualityFlags, numValueseph, numValuesatt, asciiUTC_Eph,
asciiUTC_Att, positionECI, velocityECI, eulerAngles,
xyzRoteRates, attitQuat);

 6-220 333-EMD-001, Rev. 05

if (returnStatus != PGS_S_SUCCESS)
{
** do some error handling **
}

FORTRAN: integer numvalueseph/10/
integer numvaluesatt/10/
integer returnstatus
integer qualityflags(2,numvalues)
character*27 asciiutcstart

 character*27 asciiutcstop
 character asciiutceph(28, numvalues)

character asciiutcatt(28, numvalues)
 double precision positioneci(3,numvalues)

double precision velocityeci(3,numvalues)
double precision eulerangles(3,numvalues)
double precision xyzrotrates(3,numvalues)
double precision attitquat(4,numvalues)

C initialize asciiutc start/stop times
 asciiutcstart = ‘1998-02-03T19:23:45.123’

asciiutcstart = ‘1998-02-03T20:23:45.123’
 returnstatus = pgs_eph_uniterpephatt(pgsd_eos_am,

asciiutcstart, asciiutcstop, pgs_true, pgs_true,
qualityFlags, numvalueseph, numvaluesatt,
asciiutceph,asciiutcatt, positioneci, velocityeci,
eulerangles, xyzroterates, attitquat)

 if (returnstatus .ne. pgs_s_success) then
 :
*** do some error handling ***
 :
endif

NOTES: The Euler angles are always relative to the geocentrically based
orbital reference frame The attitude rates for TRMM are relative to
geodetic orbital reference. The attitude rates for AM1 and later
spacecraft are relative to inertial (J2000) reference. In all cases, the
attitude rates are the spacecraft angular velocity vector projected on
the body axes.

QUALITY FLAGS:

 The quality flags are returned as integer quantities but should be
interpreted as bit fields. Only the first 32 bits of each quality flag is
meaningfully defined, any additional bits should be ignored (currently

 6-221 333-EMD-001, Rev. 05

integer quantities are 32 bits on most UNIX platforms, but this is not
guaranteed to be the case—e.g. an integer is 64 bits on a Cray).

Generally the quality flags are platform specific and are not defined by the
Toolkit. Two bits of these flags have, however, been reserved for SDP
Toolkit usage. Bit 12 will be set by the Toolkit if no data is available at a
requested time, bit 14 will be set by the Toolkit if the data at the requested
time has been interpolated (the least significant bit is “bit 0”). Any other
bits are platform specific and are the responsibility of the user to interpret.
See also Section L.3 (Quality Flags).

 See Section 6.2.7.1 (Time Acronyms)

 See Section 6.2.7.2 (ASCII Time Formats)

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

See Appendix L (ECS Spacecraft Ephemeris and Attitude File Formats)

ERROR HANDLING: See notes for PGS_EPH_EphemAttit().

REQUIREMENTS: PGSTK-0720, PGSTK-0141

 6-222 333-EMD-001, Rev. 05

Get Ephemeris and Attitude Metadata

NAME: PGS_EPH_GetEphMet()

SYNOPSIS:

C: #include <PGS_EPH.h>

 PGSt_SMF_status
PGS_EPH_EphMet(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_integer* numOrbits,
 PGSt_integer orbitNumber[],
 char orbitAscendTime[][28],
 char orbitDescendTime[][28],
 PGSt_double orbitDownLongitude[])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’
include ‘PGS_EPH_5.f’

 integer function pgs_eph_getephmat(spacecrafttag,numvalues,asciiutc,
 offsets,numorbits,orbitnumber,orbitascendtime,
 orbitdescendtime,orbitdownlongitude)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer numorbits
 integer orbitnumber(*)
 character*27 orbitascendtime(*)
 character*27 orbitdescendtime(*)
 double precision orbitdownlongitude(*)

DESCRIPTION: This tool returns the metadata associated with toolkit spacecraft
ephemeris/attitude files.

 6-223 333-EMD-001, Rev. 05

INPUTS:
Table 6-81. PGS_EPH_GetEphMet Inputs

Name Description Units Min Max
spacecraftTag spacecraft identifier N/A
numValues num. Of values requested N/A
asciiUTC UTC time reference start time in

CCSDS ASCII time code A format
ASCII 1961-01-01 See Notes

offsets array of time offsets in seconds
relative to asciiUTC

seconds depends on asciiUTC

OUTPUTS:
Table 6-82. PGS_EPH_GetEphMet Outputs

Name Description Units
numOrbits number of orbits spanned by data set N/A
orbitNumber array of orbit numbers spanned by data set N/A
orbitAscendTime array of times of spacecraft northward equator crossings ASCII
orbitDescedTime array of times of spacecraft southward equator crossings ASCII
orbitDownLongitude array of longitudes of spacecraft southward equator crossings radians

RETURNS:
Table 6-83. PGS_EPH_GetEphMet Returns

Return Description
PGS_S_SUCCESS Successful return
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephemeris/attitude files could be found for input

times
PGSEPH_E_EPH_BAD_ARRAY_VALUE Array size specified is less than 0
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_SC_TAG_UNKNOWN Unrecognized/unsupported spacecraft tag
PGSEPH_W_CORRUPT_METADATA Same detadata values are believed to be corrupt
PGS_E_TOOLKIT An unexpected error occured

EXAMPLES:

C: #include <PGS_EPH.h>

#define ORBIT_ARRAY_SIZE 5 /* maximum number of orbits
 expected */

 6-224 333-EMD-001, Rev. 05

#define EPHEM_ARRAY_SIZE 100 /* number of ephemeris data
 points */

PGSt_double offsets[EPHEM_ARRAY_SIZE];
PGSt_double orbitdownlongitude[ORBIT_ARRAY_SIZE][3];

PGSt_integer numOrbits;

PGSt_integer orbitnumber[ORBIT_ARRAY_SIZE];

char asciiUTC[28];
char orbitAscendTime[ORBIT_ARRAY_SIZE][28];
char orbitDescendTime[ORBIT_ARRAY_SIZE][28];

/* initialize asciiUTC and offsets array with the times for
 actual ephemeris records that will be processed (i.e. by
 some other tool) */

strcpy(asciiUTC,”1998-02-03T19:23:45.123”);

for (i=0;i<EPHEM_ARRAY_SIZE;i++)
{
 offsets[i] = (PGSt_double) i*60.0;
}

/* get the ephemeris metadata associated with these times */

returnStatus = PGS_EPH_GetEphMet(PGSd_EOS_AM,
 EPHEM_ARRAY_SIZE,
 asciiUTC,
 offsets,&numOrbits,
 orbitnumber,
 orbitAscendTime,
 orbitDescendTime,
 orbitDownLongitude);

if (returnStatus != PGS_S_SUCCESS)
{
 :
** do some error handling **
 :
}

/* numOrbits will now contain the number of orbits spanned
 by the data set (as defined by asciiUTC and
 EPHEM_ARRAY_SIZE offsets). orbitAscendTime will contain
 numOrbits ASCII UTC times representing the time of
 northward equator crossing of the spacecraft for each

 6-225 333-EMD-001, Rev. 05

 respective orbit. orbitDescendTime will similarly
 contain the southward equator crossing times and
 orbitDownLongitude will contain the southward equator
 crossing longitudes */

FORTRAN: implicit none

include ‘PGS_EPH_5.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’
include ‘PGS_SMF.f’

integer orbit_array_size/1/ ! max. num. orbits expected
integer ephem_array_size/100/ ! num. of ephem. data points

double precision offsets(ephem_array_size, 3)
double precision orbitdownlongitude(orbit_array_size, 3)

integer numorbits
integer orbitnumber(orbit_array_size)

character*27 asciiutc
character*27 orbitascendtime(orbit_array_size)
character*27 orbitdescendtime(orbit_array_size)

! initialize asciiutc and offsets array with the times for actual

! ephemeris records that will be processed (i.e. by some other tool)

asciiutc = ‘1998-02-03t19:23:45.123’

do 100 i=1,ephem_array_size

offsets(i) = i*60.D0

100 continue

! get the ephemeris metadata associated with these times

returnStatus = pgs_eph_getephmet(pgsd_eos_am,
> ephem_array_size, asciiutc,
> offsets,numorbits,
> orbitnumber
> orbitascendtime,
> orbitdescendtime,
> orbitdownlongitude)

 6-226 333-EMD-001, Rev. 05

if (returnStatus .ne. pgs_s_success) then

 :
** do some error handling **
 :

endif

! numOrbits will now contain the number of orbits spanned by the data set

! (as defined by asciiUTC and EPHEM_ARRAY_SIZE offsets). orbitAscendTime

! will contain numOrbits ASCII UTC times representing the time of northward

! equator crossing of the spacecraft for each respective orbit.

! orbitDescendTime will similarly contain the southward equator crossing

! times and orbitDownLongitude will contain the southward equator crossing

! longitudes

NOTES: The tool checks for certain kinds of inconsistant or impossible metadata,
such as out-of-sequence orbit numbers, orbit start and stop times etc., also
see NOTES section of PGS_EPH_EphemAttit()

REQUIREMENTS: PGSTK-0720, PGSTK-0141

 6-227 333-EMD-001, Rev. 05

Manage Masks

NAME: PGS_EPH_ManageMasks()

SYNOPSIS:

C: #include <PGS_EPH.h>

 PGSt_SMF_status

 PGS_EPH_ManageMasks(

 PGSt_integer command,

 PGSt_integer qualityFlagsMasks[2])

FORTRAN: include 'PGS_SMF.f'

 include 'PGS_TD.f'

 include 'PGS_EPH_5.f'

 integer function

 pgs_eph_managemasks(command,qualityflagsmasks)

 integer command

 integer qualityflagsmasks(2)

DESCRIPTION: This function is used to get and/or set the values of the ephemeris and
attitude quality flags masks. Any bit set in the mask makes the
corresponding bit, when encountered in the quality flag from a data
packet, fatal.

INPUTS:
Table 6-84. PGS_EPH_ManageMasks Inputs

Name Description Units Min Max
command specifies action (get or set) to be

taken by this function. Possible
value: PGSd_SET and PGSd_GET

N/A N/A N/A

qualityFlagsM
asks

ephemeris and attitude quality flags
masks, in that order

N/A N/A N/A

 6-228 333-EMD-001, Rev. 05

OUTPUTS:
Table 6-85. PGS_EPH_ManageMasks Outputs

Name Description Units
qualityFlagsMasks ephemeris and attitude quality flags masks, in that order. N/A

RETURNS:
Table 6-86. PGS_EPH_ManageMasks Returns

Return Description
PGS_S_SUCCESS Successful return
PGSPC_E_DATA_ACCESS_ERROR Error accessing Process Control File
PGS_E_TOOLKIT An unexpected error occured

EXAMPLES: The following code would be imbedded in overlying code calling this
function. The examples show how to set the flag masks for ephemeris and
for attitude data. The other option would be used to get the flag masks
from the static buffer in the function itself. To set the masks for an entire
run, the PCF can be used. The unit number for the ephemeris mask,
PGSd_EPH_QFLAG_MASK is 10507, while that for attitude,
PGSd_ATT_QFLAG_MASK is 10508. These equivalences are defined in
PGS_EPH.h.

C:

PGSt_integer qualFlagM[2]; /* quality flags as integers */

qualFlagM[0]=0x400; /* rejects “repaired” ephemeris data */

qualFlagM[1]=0x20; /* rejects attitude data failing red limit */

 returnStatus = PGS_EPH_ManageMasks(PGSd_SET,qualFlagM);

FORTRAN:

integer pgs_eph_managemasks

integer*4 flag_value(2) ! quality flags as integers

integer setter ! to get or set (boolean)

DATA flag_value /1024, 32/ ! rejects repaired ephem. data

 6-229 333-EMD-001, Rev. 05

* and attitude data failing

* red limit

setter = PGSd_SET

returnStatus = pgs_eph_managemasks(setter,flag_value)

NOTES: This function allows for user defined "masks" for the two data quality
flags (ephemeris and attitude) associated with spacecraft ephemeris and
attitude data. The quality flags are four byte entities (they may be 8 bytes
on the Cray but only the first four bytes will be considered) that are
interpreted bit by bit for meaning. The least significant bit is bit 0.
Currently, the only "fatal" bit (i.e. indicating meaningless data) that will
be set prior to access by the toolkit is bit 16. Additionally the toolkit will
set bit 12 of the quality flag returned for a given user input time if NO data
are found for that input time. Note that this usage is different from most
of the other bits, which indicate the state of some existing data point. By
default this function will set the mask for each of the quality flags to
include bit 16 (fatally flawed data) and bit 12 (no data). This means that
any data points returned from the tool PGS_EPH_EphemAttit() with an
associated quality flag that has either bit 12 or bit 16 set will be rejected
by any TOOLKIT function that makes a call to PGS_EPH_EphemAttit()
(note that masking is not applied in the tool PGS_EPH_EphemAttit() itself
since users calling this tool directly can examine the quality flags
themselves and make their own determination as to which data points to
use or reject). The functions affected by using PGS_EPH_ManageMasks()
are:

PGS_CBP_Sat_CB_Vector()

PGS_CBP_body_inFOV()

PGS_CSC_ECItoORB()

PGS_CSC_ECItoSC()

PGS_CSC_Earthpt_FOV()

PGS_CSC_Earthpt_FixedFOV()

PGS_CSC_GetFOV_Pixel()

PGS_CSC_ORBtoECI()

PGS_CSC_ORBtoSC()

PGS_CSC_SCtoECI()

PGS_CSC_SCtoORB()

PGS_CSC_SubSatPoint()

 6-230 333-EMD-001, Rev. 05

For identification of the different bits, please refer to Appendix L of this
User Guide.

Users can use this tool or the Process Control File (PCF) to define their
own masks which the toolkit will then use instead of the defaults
mentioned above. The user defined mask should contain set any bit which
the user considers fatal for her/his purpose (e.g. red limit exceeded).
WARNING: if the user defined mask does not have bit 16 set, the toolkit
will pass through data the associated quality flag of which has bit 16 set.
The toolkit will not, however, process any data points if the associated
quality flag has bit 12 set (i.e. no data exist) whether or not the user mask
has bit 12 explicitly set.

DETAILS: This function will attempt (on its first invocation) to initialize the values
of the ephemeris data quality flag masks and the attitude data quality flag
masks from values specified in the Process Control File (PCF). If the first
call to this function is a "set" (PGSd_SET) operation, the quality flags
masks will immediately be set to the input values (i.e. ignoring the values
found in the PCF or any errors in attempting to determine the values from
the PCF). Once initialized the values of the quality flags masks can then
be accessed via the "get" (PGSd_GET) command or altered via the "set"
command. The values are retained internally in the function
PGS_EPH_ManageMasks().

REQUIREMENTS: PGSTK - 0141, 0720, 0740

 6-231 333-EMD-001, Rev. 05

6.2.6.3 EPH Functions

PGS_EPH_EphemAttit

See description in 6.2.6.3 Spacecraft Ephemeris and Attitude Tool.

PGS_EPH_GetEphMet

See description in 6.2.6.3 Get Ephemeris and Attitude Metadata.

PGS_EPH_interpolateAttitude

Given a pair of spacecraft attitudes (as Euler angles), attitude rates and their corresponding times
this function interpolates the spacecraft attitude and attitude rates to a requested time between
the two input times.

PGS_EPH_EphAtt_unInterpolate

Given a pair of spacecraft attitudes (as Euler angles), attitude rates and their corresponding times
this function provides the actual data upon requested.

PGS_EPH_interpolatePosVel

Given a pair of spacecraft position vectors, velocity vectors and their corresponding times this
function interpolates the spacecraft position and veloctiy to a requested time between the two
input times.

6.2.7 Time and Date Conversion Tools
The ability to convert easily and accurately between different representations of time is crucial to
EOS science data processing. The time and date conversion routines in the SDP Toolkit will
convert between spacecraft time, UTC, International Atomic Time (TAI) and Julian date, as well
as converting double precision values to and from CCSDS ASCII formats. Time values are
converted for use in science software and as parameters when performing geo-coordinate
transformations. In addition, converting time parameters to ASCII or to other more easily read
formats facilitates the time values being added to metadata and to various processing logs in a
human-readable form.

The spacecraft, UTC, Julian Date, and other times used as input and output for the time and date
conversion routines will be in accord with the Consultative Committee for Space Data Systems
(CCSDS) standard time code formats where applicable. The formats are described in CCSDS
Blue Book, Issue 2, Time Code Formats, (CCSDS 301.0-B-2) issued by the Consultative
Committee for Space Data Systems (NASA Code- OS, NASA, Washington DC 20546), April
1990. Various EOS supported spacecraft will deliver time data in various CCSDS binary codes.
The Toolkit will translate times from these codes to more user friendly formats. Therefore,
binary formats will not be described in the present manual. The reader is referred to the Blue
Book and to interface documents for the particular spacecraft of interest. The ASCII codes will
be described herein both for the convenience of users, and because we have exercised discretion
in permitting or forbidding certain truncations.

 6-232 333-EMD-001, Rev. 05

Because UTC as a real variable is discontinuous at leap seconds boundaries (approximately
every one to two years) it has been decided to carry it only in ASCII formats. TAI time runs at
the same (Standard International compatible) rate and will be carried as a double precision
number, in two ways: Julian Date and seconds from Jan. 1, 1993 UTC midnight.

Toolkit times are either character strings (CCSDS ASCII format), an array of two high precision
real values (Toolkit Julian Dates) or a single high precision real value (all other values).

6.2.7.1 Time Acronyms

GAST Greenwich Apparent Sidereal Time
GMST Greenwich Mean Sidereal Time
GPS Global Positioning System
MJD Modified Julian Date
TAI International Atomic Time
TDB Barycentric Dynamical Time
TDT Terrestrial Dynamical Time
TJD Truncated Julian Date
UT1 Universal Time
UTC Coordinated Universal Time

6.2.7.2 ASCII Time Formats
The CCSDS ASCII Time Codes (A and B formats) are defined in the CCSDS Blue Book, pages
2-6 to 2-8. The full format requires all the subfields be present, but certain subsets of the
complete time codes are allowed (pages 2-7 to 2-8 of the Blue Book). The Toolkit will handle
input and output with slightly different restrictions.

CCSDS ASCII Time Code A as implemented by the Toolkit:

YYYY-MM-DDThh:mm:ss.d->dZ

[Example 2002-02-23T11:04:57.987654Z]

where

YYYY = a four character subfield for year, with value in range 0001-9999

MM = a two character subfield for month with values 01-12, leading zeros required

DD = a two character subfield for day with values in the range 01-eom, where eom is 28,
29, 30, or 31 according to the month (and, for February, the year)

The “T”, a separator, must follow the DD subfield; if and only if there are more
characters after the DD subfield; the string will be accepted and parsed such that mm, ss,
and d are treated as 0. In that case, a “Z” will still be accepted, but not required, at the
end.

hh = a two character subfield for hours, with values 00-23

mm = a two character subfield for minutes, with values 00-59

 6-233 333-EMD-001, Rev. 05

ss = a two character subfield for seconds, with values 00-59 (00-60 in a positive leap
second interval, 00-58 in the case of a negative leap second)

d->d an n-character subfield, (n < 7 for input n = 6 for output), for decimal fraction of a
second, with each digit in the range 0-9. If the decimal point appears on input, digits must
follow it.

Z - terminator, optional on input

The CCSDS ASCII Time Code B format, described on p. 2-7 of the Blue Book, is:

YYYY-DDDThh:mm:ss.d->dZ

[Example 2002-054T11:04:57.987654Z]

The format is identical to the Code A except that the month, day combination MM-DD is
replaced by day of year, i.e.,

DDD = Day of Year as a 3 character subfield with values 001-365 in non leap years and
001-366 in leap years.

NOTE: The CCSDS Formats require all leading zeros be present.

ASCII Time Input

ASCII time input strings may be in either CCSDS ASCII Time Code A format or CCSDS ASCII
Time Code B format. All Toolkit functions requiring input ASCII time strings will correctly
identify either format.

The Toolkit requires input ASCII time strings to include at least full dates (in format A or B) and
will accept ASCII time strings that include times with up to six digits after the decimal point, or
subsets truncated from the right (i.e., fractions of a second, whole seconds, minutes, or hours can
be omitted by the user and the values will be set to zero. If a subfield is omitted the whole
subfield should be omitted; e.g., “ss” cannot be replaced by “s” for seconds.) The time string
may also not end with a field delimiter: “T”,”:” or “.”. Users are warned that no error status or
message will issue if any of these subfields is missing, so long as truncation is from the right;
users should be careful to pass a string of sufficient length to accommodate their data! The
Toolkit will not accept truncations from the left; i.e., the year, month and day must be present as
four, two, and two digits respectively, or the year as four digits and the day of year as three.
Truncation from the left would be too dangerous in view of the coming century change.

Finally, the Toolkit will provide an error message, which will include passing one or more of the
offending characters, if the format is violated by input data. In this context, day numbers in
excess of the allowable value for the month (and year, for February) are considered errors in
format (e.g., a fatal message will issue if DDD = 366 (format B) or MM = 02 and DD = 29
(format A) in a non leap year). A fatal message will issue if the integer part of the seconds
subfield runs over 58 in the presence of a negative leap second or over 59 in the absence of a
positive leap second. There is no protection against missing data in the presence of a positive
leap second if the integer seconds subfield fails to read 60; in that case Toolkit routines cannot
populate the leap second interval.

 6-234 333-EMD-001, Rev. 05

ASCII Time Output

All ASCII time output strings will be in CCSDS ASCII Time Code A format (except for the
output of PGS_TD_ASCIItime_AtoB(), which will be in CCSDS ASCII Time Code B format).

The Toolkit will output the full format (date and time), to six digits in the fractional seconds,
even though the accuracy may be poorer than one microsecond. There are two reasons why the
Toolkit will output microseconds, even though most users will not want numbers more accurate
than one millisecond: (i) At least one platform (AM1) plans to provide microseconds; we do not
wish to degrade their resolution. (ii) We wish to provide for upgradeability.

The Toolkit will issue a terminal “Z” on the output string to facilitate identification of the end of
string and to signify Universal time.

The output strings will be 27 characters in Code A, including the “Z”, and 25 in Code B,
including the “Z” (Note: this does NOT include the terminating NULL character required
in C strings).

6.2.7.3 Toolkit Internal Time (TAI)
Toolkit internal time is the real number of continuous SI seconds since the epoch of UTC 12 AM
1-1-1993. Toolkit internal time is also referred to in the Toolkit as TAI (upon which it is based).
Values are maintained as single high precision real numbers (C: PGSt_double, FORTRAN:
DOUBLE PRECISION). The numbers will be negative until midnight, UTC Jan. 1, 1993 and
positive after that. The whole number part carries whole seconds and the fractional part carries
fractions of a second.

Occasionally, users may wish to relate Toolkit internal time to seconds since Jan. 1, 1958,
midnight. The exact numbers’ of TAI seconds from 1958-01-01T00:00:00 to 1993-01-
01T00:00:00 is 1104537627.0

6.2.7.4 Toolkit Julian Dates

6.2.7.4.1 Format

Toolkit Julian dates are kept as an array of two real high precision numbers (C: PGSt_double,
FORTRAN: DOUBLE PRECISION). The first element of the array should be the half integer
Julian day (e.g., N.5 where N is a Julian day number). The second element of the array should be
a real number greater than or equal to zero AND less than one (1.0) representing the time of the
current day (as a fraction of that (86400 second) day. This format allows relatively simple
translation to calendar days (since the Julian days begin at noon of the corresponding calendar
day). Users of the Toolkit are encouraged to adhere to this format to maintain high accuracy (one
number to track significant digits to the left of the decimal and one number to track significant
digits to the right of the decimal). Toolkit functions that do NOT require a Julian type date as an
input and that do return a Julian date will return it in the above mentioned format. Toolkit
functions that require a Julian date as an input and do NOT return a Julian date will first convert
(internally) the input date to the above format if necessary. Toolkit functions that have a Julian
date as both an input and an output will assume the input is in the above described format but

 6-235 333-EMD-001, Rev. 05

will not check and the format of the output may not be what is expected if any other format is
used for the input.

6.2.7.4.2 Meaning

Toolkit “Julian dates” are all derived from UTC Julian Dates. A Julian date in any other time
stream (e.g., TAI, TDT, UT1, etc.) is the UTC Julian date plus the known difference of the other
stream from UTC (differences range in magnitude from 0 seconds to about a minute). Note that
although UTC days having leap seconds actually contain 86401 seconds, this is not true for
Julian Days of any kind as implemented in the Toolkit. TAI, UT1, TDT and TDB Julian Days
are all 86400 seconds, while the UTC Julian Day with the leap second contains duplicate values
for one second; only in ASCII form does it have 86401 distinct seconds.

6.2.7.4.3 Examples

In the following examples, all Julian Dates are expressed in Toolkit standard form as two double
precision numbers. For display here, the two members of the array are enclosed in braces {} and
separated by a comma.

a. UTC to TAI Julian dates conversion

The Toolkit UTC Julian date for 1994-02-01T12:00:00 is: {2449384.50, 0.5}. TAI-UTC
at 1994-02-01T12:00:00 is 28 seconds (.00032407407407 days). The Toolkit TAI Julian
date for 1994-02-01T12:00:00 is:

{2449384.50, 0.5 + .00032407407407} = {2449384.50, 0.50032407407407}

Note that the Julian day numbers in UTC and the target time stream may be different by
+ or - 1 for times near midnight.

b. UTC to UT1 Julian dates conversion

The Toolkit UTC Julian date for 1994-04-10T00:00:00 is: {2449452.50, 0.0}. UT1-UTC
at 1994-04-10T00:00:00 is -.04296 seconds (-0.00000049722221 days). The Toolkit UT1
Julian date for 1994-04-10T00:00:00 is:

 {2449452.50, 0.0 - 0.0000004972222}
= {2449452.50, -0.0000004972222}
= {2449451.50, 0.9999995027778}

6.2.7.5 Time Boundaries

Many of the Toolkit functions that require time as an input or output keep track of time in the
SDP Toolkit internal time format (see above). Most of these functions depend on the file
leapsec.dat that contains the values of TAI-UTC (leap seconds).

Some Toolkit functions also (or instead) rely on the file utcpole.dat that contains the values of
UT1-UTC.

 6-236 333-EMD-001, Rev. 05

The times that can be processed by a function may depend on the values maintained in one or
both of these files which are updated periodically with new values.

6.2.7.5.1 TAI-UTC Boundaries

The minimum and maximum times that can successfully be processed by functions requiring the
value TAI-UTC depend on the file leapsec.dat that relates leap second (TAI-UTC) values to
UTC Julian dates. The file leapsec.dat contains dates of new leap seconds and the total leap
seconds times on and after Jan 1, 1972. For times between Jan 1, 1961 and Jan 1, 1972 it
contains coefficients for an approximation supplied by the International Earth Rotation Service
(IERS) and the United States Naval Observatory (USNO). These approximations are the same as
adopted by the Jet Propulsion Laboratory (JPL) ephemeris group that produces the DE series of
solar system ephemerides, such as DE200, and are used consistently with IERS/USNO/JPL
usage. For times after Jan 1, 1961, but before the last date in the file, the Toolkit sets TAI-UTC
equal to the total number of leap seconds to date, (or to the USNO/IERS approximation, for
dates before Jan 1, 1972). If an input date is before Jan 1, 1961 the Toolkit sets the leap seconds
value to 0.0. This is consistent with the fact that, for civil timekeeping since 1972, UTC replaces
Greenwich Mean Solar Time (GMT), which had no leap seconds. Thus for times before
Jan 1 1961, the user can, for most Toolkit-related purposes, encode Greenwich Mean Solar Time
as if it were UTC. If an input date is after the last date in the file, or after Jan 1, 1961, but the
file cannot be read, the function will use a calculated value of TAI-UTC based on a linear fit of
the data known to be in the table as of early 1997. This value is a crude estimate and may be off
by as much as 1.0 or more seconds. If the data file, leapsec.dat, cannot be opened, or the time is
outside the range from Jan 1, 1961 to the last date in the file, the return status level will be 'E'.
Even when the status level is 'E', processing will continue, using the default value of TAI-UTC
(0.0 for times before Jan 1, 1961, or the linear fit for later times). Thus, the user should always
carefully check the return status. For times between 1961 and 1972, the leap seconds file
contains data used in approximations designed to correct Greenwhich Mean Time to as close an
equivalent of UT1 as possible; the Toolkit thus determines Earth rotation from GMT in that
period.

6.2.7.5.2 UT1-UTC Boundaries

UT1 is the standard measure of axial Earth rotation and is used by all Toolkit functions for
geolocation that locate the spacecraft relative to Earth, or Earth relative to sky (inertial space).
UT1 can be reversibly transformed to "Greenwich Hour Angle". It is therefore important to
maintain accurate values of UT1. The minimum and maximum times that can successfully be
processed by functions requiring the value UT1-UTC depend on the file utcpole.dat that relates
UT1-UTC values to UTC dates. The file utcpole.dat starts at June 30, 1972.

The file utcpole.dat, which is maintained periodically, contains final (definitive) and predicted
values for UT1 - UTC and related variables that describe polar motion, a small correction (~< 15
meters) to geographic positions due to polar wander and wobble. When the file is updated, the
definitive data will reach to within a week in the past of the update time, and the predicted data
will extend about one year into the future. A success status message will be returned if all input
times correspond to final values. A warning status message will be returned if predicted values

 6-237 333-EMD-001, Rev. 05

are encountered. An error message will be returned if the time requested is beyond the end of
the predictions, or the file cannot be read. The "predicted" values are expected to be satisfactory
for most users for several weeks, even if the file is not updated weekly as it should be, because
the predictions are rather good for many weeks. Users who desire to reprocess for better
accuracy (< 1 m Earth position) will notice their results changing. Because the U.S. Naval
Observatory (USNO) gradually refines its older solutions for Earth rotation, which are captured
in our file "utcpole.dat", changes at the millimeter to centimeter level may be noticed weeks later
even for data processed with "final" values for UT1. (Please note that with Toolkit 5.2 and later,
predictions are carried only 83 days ahead, because a leap second could be announced, changing
subsequent predictions by one second. Thus the values for 90 days and beyond are no longer
relevant; and the error will not exceed about 3.5 m. See section 6.2.7.6.) The following Table,
based on error estimates in the USNO data table “finals.data” as of April 23, 1996, indicates the
one-sigma errors to be expected in using the file “utcpole.dat” . The days in the left column
should be interpreted as days since the last update of the file. The error is due to the inability to
predict Earth rotation precisely. The error for times in the recent past (not shown) is only of
order < 10 cm. The "interim" data quality supported in TK5 is no longer carried. The first few
weeks of predictions are as good as the old "interim" values. Note that the rather small error
values in Table 6-84 are a tiny part of the overall difference, UT1 - UTC, which is typically in
the range ~ -0.9 to 0.9 seconds, or ~ -420 to +420 m. Please see Appendix N for an example of a
utcpole.dat file.

Table 6-87. Estimated Errors in UT1 Predictions
(Milliseconds of Time and Equivalent Meters of Geolocation Error)

Prediction Period

(Days)

Error
(milliseconds)

(1 std deviation)

Error
(meters at the equator)

(1 std deviation)
1 0.3 0.14
30 3.9 1.7
60 6.5 3.0
90 8.8 4.0

120 10.9 4.9
150 12.9 5.8
180 14.8 6.7
225 17.5 7.9
270 20.1 9.0
315 22.5 10.1
360 24.9 11.0
365 25.7 11.5

Because of the reduced accuracy with predicted UT1, and the maximum extension of one year to
the predictions, when a relevant function is used, this should carefully check the return status. A
success (‘S’) level status message will be returned if all input times correspond to final values. A
warning (‘W’) level status message will be returned if any input times correspond to predicted
values, even though the error may not be large enough to concern most users. An error (‘E’)

 6-238 333-EMD-001, Rev. 05

level status message will be returned if the file utcpole.dat cannot be found or if an input time is
outside the range of values in the file.

These error messages due to end-of-data could cause problems for users who wish to run
simulations one year or more in advance. Users needing to run simulations in the far future can
follow procedures shown on the Toolkit Home Page under “Upgrading to Toolkit 5.2” at their
own risk. These procedures are risky in an SCF environment or other non-DAAC environment,
because of the possibility of pointing at the edited (and hence, false) data files when processing
real data. There could also be risk at a DAAC environment if anyone found a way to point at
these files with an altered PCF, e.g. if a command-line run were possible in processing science
data

6.2.7.6 Updating the Leap Seconds File

The file $PGSDAT/TD/leapsec.dat contains leap seconds data, used by many tools. Since new
leap seconds must be appended when they are announced, the file must be periodically updated.
The SDP Toolkit contains utilities to perform this update function. If the leap seconds file is
more than 83 days old, and the last leap second in the file is also more than 83 days in the past of
the time which is being translated by the time tools, an error return will result, because the time
cannot be reliably translated. So long as the updates are performed periodically as explained
below, users will encounter no problem in processing current or past data, or simulations for the
near term future. Users needing to process far future simulations should consult the Toolkit web
site or the Toolkit maintenance and operations staff.

The shell script update_leapsec.sh, which is found in $PGSBIN, will update the leapsec.dat file
to the current date. The Clear Case version, update_leapsec_CC.sh, will do the same job within
a Clear Case (CM) view. To maintain a current leapsec.dat, the appropriate script must be run at
least every month; running once a week offers more protection against an error condition, in case
of problems with ftp. The leap seconds are declared by International Earth Rotation Service
(IERS) in France, on the basis of their estimates of variations in Earth rotation. Leap seconds are
usually added at the start of January or July, and announced nearly six months ahead. The IERS
can, however, announce leap seconds on as little as 90 days notice, after which the U.S. Naval
Observatory may need up to a week to post them. For that reason, the 83 day file life is enforced,
and weekly running of the scripts is advised. Update_leapsec.sh calls PGS_TD_NewLeap, a C
program that performs most of the actual update work.

The update is done by collecting the latest information via ftp from the U. S. Naval Observatory.
At the DAACs, the process is done automatically by the scheduler. . At Science Computing
Facilities, for Toolkits through version 5.2.1, drop 4, users will need to have a ".netrc" file in
their home directories, as explained in the comments within the scripts. Later releases will not
need such a file.

 6-239 333-EMD-001, Rev. 05

6.2.7.7 Time and Date Conversion Tools

Convert UTC to TAI Time

NAME: PGS_TD_UTCtoTAI()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoTAI(
 char asciiUTC[28],
 PGSt_double *secTAI93);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctotai(asciiutc, sectai93)
 character*27 asciiutc
 double precision sectai93

DESCRIPTION: This tool converts UTC time in CCSDS ASCII Time Code (A or B
format) to Toolkit internal time (real continuous seconds since 12AM
UTC 1-1-93).

INPUTS:
Table 6-88. PGS_TD_UTCtoTAI Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII Time

Code A format or ASCII Time
Code B format

time 1961-01-01T00:00:00Z see NOTES

OUTPUTS:
Table 6-89. PGS_TD_UTCtoTAI Outputs

Name Description Units Min Max
secTAI93 continuous seconds since 12AM UTC

Jan. 1, 1993
seconds -1009843225.5 see NOTES

 6-240 333-EMD-001, Rev. 05

RETURNS:
Table 6-90. PGS_TD_UTCtoTAI Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGS_E_TOOKIT Something unexpected happened, execution aborted

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char asciiUTC[28];
PGSt_double secTAI93;

 strcpy(asciiUTC,”1993-01-02T00:00:00.000000Z”);
returnStatus = PGS_TD_UTCtoTAI(asciiUTC,&secTAI93);
if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

printf(“TAI: %f\n”,secTAI93);

FORTRAN: implicit none

 integer pgs_td_utctotai
integer returnstatus
character*27 asciiutc
double precision sectai93

 asciiutc = ‘1993-01-02T00:00:00.000000Z’
returnstatus = pgs_td_utctotai(asciiutc,sectai93)
if (returnstatus .ne. pgs_s_success) goto 999
write(6,*) ‘TAI: ‘, sectai93

NOTES: TIME ACRONYMS:

 TAI is: International Atomic Time
UTC is: Universal Coordinated Time

TIME BOUNDARIES:

See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 6-241 333-EMD-001, Rev. 05

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the
epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to in
the toolkit as TAI (upon which it is based).

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210, PGSTK-1220

 6-242 333-EMD-001, Rev. 05

Convert TAI to UTC Time

NAME: PGS_TD_TAItoUTC()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_TAItoUTC(
 PGSt_double secTAI93,
 char asciiUTC[28]);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_taitoutc(sectai93, asciiutc)
 character*27 asciiutc
 double precision sectai93

DESCRIPTION: This tool converts Toolkit internal time (real continuous seconds since
12AM UTC 1-1-93) to UTC time in CCSDS ASCII Time Code A format.

INPUTS:
Table 6-91. PGS_TD_TAItoUTC Inputs

Name Description Units Min Max
secTAI93 continuous seconds since 12AM

UTC Jan. 1, 1993
seconds -1009843225.577182 see NOTES

OUTPUTS:
Table 6-92. PGS_TD_TAItoUTC Outputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII Time

Code A format
time 1961-01-01T00:00:00 see NOTES

RETURNS:
Table 6-93. PGS_TD_TAItoUTC Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGS_E_TOOLKIT Something radically wrong occurred

 6-243 333-EMD-001, Rev. 05

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double secTAI93;
char asciiUTC[28];

 secTAI93 = 86400.;
returnStatus = PGS_TD_TAItoUTC(secTAI93,asciiUTC);
if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

printf(“UTC: %s\n”,asciiUTC);

FORTRAN: implicit none

 integer pgs_td_taitoutc
integer returnstatus
double precision sectai93
character*27 asciiutc

 sectai93 = 86400.D0
returnstatus = pgs_td_taitoutc(sectai93,asciiutc)
if (returnstatus .ne. pgs_s_success) goto 999
write(6,*) ‘UTC: ‘, asciiutc

NOTES: TIME ACRONYMS:

 TAI is: International Atomic Time
UTC is: Universal Coordinated Time

TIME BOUNDARIES:

See Section 6.2.7.5.1 (TAI-UTC Boundaries)

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the
epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to in
the toolkit as TAI (upon which it is based).

REFERENCES FOR TIME:

CCSDS 2301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210, PGSTK-1220

 6-244 333-EMD-001, Rev. 05

Convert Toolkit Internal Time to TAI Julian Date

NAME: PGS_TD_TAItoTAIjd()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_double *

 PGS_TD_TAItoTAIjd(

 PGSt_double secTAI93,

 PGSt_double jdTAI[2])

FORTRAN include “PGS_SMF.f”

include “PGS_TD_3.f”

double precision function pgs_td_taitotaijd(sectai93, jdtai)

 double precision sectai93

 double precision jdtai(2)

DESCRIPTION: This function converts time in TAI seconds since 12 AM UTC 1-1-1993
to TAI Julian date.

INPUTS:
Table 6-94. PGS_TD_TAItoTAIjd.c Inputs

Name Description Units Min Max
secTAI93 Toolkit internal time (seconds since 12 AM seconds 1958-01-01 none

OUTPUTS:
Table 6-95. PGS_TD_TAItoTAIjd Outputs

Name Description Units Min Max
jdTAI TAI Julian date days 2437300.5 see NOTES

RETURNS: TAI Julian date (address of jdTAI).

EXAMPLES:

C: PGSt_double secTAI93;

 PGSt_double jdTAI[2];

secTAI93 = 86400.;

 6-245 333-EMD-001, Rev. 05

PGS_TD_TAItoTAIjd(secTAI93,jdTAI);

 ** jdTAI[0] should now have the value: 2448989.5 **
** jdTAI[1] should now have the value: 0.0003125 **

FORTRAN: double precision sectai93

double precision jdtai

sectai93 = 86400.D0

call pgs_td_taitotaijd(sectai93, taijd)

! jdtai[0] should now have the value: 2448989.5

! jdtai[1] should now have the value: 0.0003125

NOTES: TAI is: Toolkit International Atomic Time measured from 1993-01-01

 The translation to and from UTC begins Jan 1, 1961. It is valid until about
6 months after the last leap second, in $PGSDAT/TD/leapsec.dat. When
the script $PGSBIN/TD/update_leapsec.sh is run regularly the leap
seconds file will be kept current and will be valid six months ahead.

 Since TAI was not defined before 1958-01-01 this is the formal lower
limit, but practically, the tool will work for any time after 4713 BC, if
TAI93 is interpreted as seconds before Jan 1, 1993 UTC midnight.

REFERENCES FOR TIME:

 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems)

 Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac

REQUIREMENTS: PGSTK - 1220, 1160, 1170

 6-246 333-EMD-001, Rev. 05

Convert TAI Julian Date to Toolkit Internal Time

NAME: PGS_TD_TAIjdtoTAI()

SYNOPSIS:
 C: #include <PGS_TD.h>
 PGSt_double
 PGS_TD_TAIjdtoTAI(

PGSt_double jdTAI[2])
FORTRAN: double precision function pgs_td_taijdtotai(jdtai)

double precision jdtai(2)
DESCRIPTION: This function converts TAI Julian date to time in TAI seconds since 12

AM UTC 1-1-1993.

INPUTS:
Table 6-96. PGS_TD_TAIjdtoTAI Inputs

Name Description Units Min Max
 jdTAI TAI Julian date days 2437300.5 ANY

OUTPUTS: None

RETURNS: Toolkit internal time (seconds since 12 AM UTC 1-1-1993).

EXAMPLES:
C PGSt_double secTAI93;

 PGSt_double jdTAI[2];

jdTAI[0] = 2448989.5;

jdTAI[1] = 0.0003125;

secTAI93 = PGS_TD_TAIjdtoTAI(jdTAI);

/* secTAI93 should now have the value: 86400.*/

NOTES: TAI is: International Atomic Time

 6-247 333-EMD-001, Rev. 05

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems)

Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac

REQUIREMENTS: PGSTK - 1220, 1160, 1170

 6-248 333-EMD-001, Rev. 05

Convert TAI to GAST

NAME: PGS_TD_TAItoGAST()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_TAItoGAST(
 PGSt_double secTAI93,
 PGSt_double *gast)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_CSC_4.f
include ‘PGS_TD_3.f’

 integer function pgs_td_taitogast(sectai93,gast)
 double precision sectai93
 double precision gast

DESCRIPTION: This function converts TAI (toolkit internal time) to Greenwich Apparent
Sidereal Time (GAST) expressed as the hour angle of the true vernal
equinox of date at the Greenwich meridian (in radians).

INPUTS:
Table 6-97. PGS_TD_TAItoGAST Inputs

Name Description Units Min Max

secTAI93 continuous seconds since 12AM UTC Jan. 1, 1993 seconds -426297609.0 see NOTES

OUTPUTS:
Table 6-98. PGS_TD_TAItoGAST Outputs

Name Description Units Min Max

gast Greenwich Apparent Sidereal Time radians 0 2PI

RETURNS:
Table 6-99. PGS_TD_TAItoGAST Returns

Return Description
PGS_S_SUCCESS Successful return
PGSCSC_W_PREDICTED_UT1 Status of UT1-UTC correction is predicted
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSTD_E_NO_UT1_VALUE No UT1-UTC correction available
PGS_E_TOOLKIT Something radically wrong occured

 6-249 333-EMD-001, Rev. 05

EXAMPLES: None

NOTES: TIME ACRONYMS:

 GAST is: Greenwich Apparent Sidereal Time
TAI is: International Atomic Time

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the
epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to in
the toolkit as TAI (upon which it is based).See Section 6.2.7.4 Time and
Date Conversion Tool Notes

TIME BOUNDARIES:

See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:CCSDS 2301.0-B-2 (CCSDS =>
Consultative Committee for Space Data Systems) Astronomical Almanac,
Explanatory Supplement to the Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210

 6-250 333-EMD-001, Rev. 05

Convert UTC Time to Spacecraft Clock Time

NAME: PGS_TD_UTC_to_SCtime()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTC_to_SCtime(
 PGSt_tag spacecraftTag,
 char asciiUTC[28],
 PGSt_scTime scTime[8]);

FORTRAN:
include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utc_to_sctime(spacecrafttag, asciiutc, sctime)
 integer spacecrafttag
 character*27 asciiutc
 character*8 sctime

DESCRIPTION: This tool converts UTC in CCSDS Time Code A or B to spacecraft clock
time in platform dependent format.

INPUTS: spacecraftTag-Spacecraft identifier; must be one of: PGSd_TRMM,
PGSd_EOS_AM, PGSd_EOS_AURA, PGSd_EOS_PM_GIIS,
PGSd_EOS_PM_GIRD

 asciiUTC-UTC time in CCSDS ASCII Time Code A or CCSDS ASCII
Time Code B format. The values of MAX, and MIN depend on the
spacecraft, see the files containing the specific conversions for more
information

OUTPUTS: scTime-Spacecraft clock time in platform dependent CCSDS format.
UNITS, MAX, and MIN depend on the spacecraft, see the files containing
the specific conversions for more information.

 6-251 333-EMD-001, Rev. 05

RETURNS:
Table 6-100. PGS_TD_UTCtoSCtime Returns

Return Description

PGS_S_SUCCESS Successful execution
PGSTD_E_SC_TAG_UNKNOWN Unknown spacecraft tag
PGSTD_E_TIME_FMT_ERROR Error in input time format
PGSTD_E_TIME_VALUE_ERROR Error in input time value
PGSTD_E_DATE_OUT_OF_RANGE Input date is out of range of s/c clock
PGSTD_E_NO_LEAP_SECS Leap seconds correction unavailable at requested time
PGS_E_TOOLKIT An unexpected error occurred

EXAMPLES:

C: char asciiUTC[28];
PGSt_scTime scTime[8];
PGSt_SMF_status returnStatus;

 strcpy(asciiUTC,”1995-02-04T12:23:44.125438Z”);

 returnStatus = PGS_TD_UTC_to_SCtime(PGSd_EOS_AM,asciiUTC,
 scTime);
if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

FORTRAN: implicit none

 integer pgs_td_utc_to_sctime
character*27 asciiutc
character*8 sctime
integer returnstatus

 asciiutc = ‘1995-02-04t12:23:44.125438Z’

 returnstatus = pgs_td_utc_to_sctime(pgsd_eos_am,asciiutc,
 sctime)
if (returnstatus .ne. pgs_s_success) then
 :

c *** do some error handling ***

 :

endif

 6-252 333-EMD-001, Rev. 05

NOTE: WARNING: To properly convert times to or from TRMM s/c clock time
the value of the TRMM Universal Time Correlation Factor (UTCF) must
be known. This value must be supplied by the user in the Process Control
File (PCF). The following line MUST be contained in the PCF for any
process that is converting to or from TRMM s/c clock time:

 10123|TRMM UTCF value|<UTC VALUE>

 Where the proper value of the UTCF should be substituted for
<UTC VALUE>.

 There is no corresponding problem for AM1 clock time, which is
specified to have an accuracy of 100 microseconds.

UTC is: Coordinated Universal Time

See Section 6.2.7.2 (ASCII Time Formats)

The output spacecraft times vary in format. The supported spacecraft
times are in the following formats:

 TRMM CUC (platform specific variant of CCSDS
 Unsegmented time code(CUC) used)
EOS AM CDS (platform specific variant of CCSDS day
 segmented time code (CDS) used)
EOS AURA CUC

EOS PM GIIS CDS

 EOS PM GIRD CUC

 REFERENCES FOR TIME:

 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK- 1170

 6-253 333-EMD-001, Rev. 05

Convert Spacecraft Clock Time to UTC Time

NAME: PGS_TD_SCtime_to_UTC()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_SCtime_to_UTC(
 PGSt_tag spacecraftTag,
 PGSt_scTime scTime[][8],
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_sctime_to_utc(spacecrafttag,
 sctime,numvalues,asciiutc,
 offsets)
 integer spacecrafttag
 character*8 sctime(*)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)

DESCRIPTION: This tool converts spacecraft clock time in platform dependent CCSDS
format to UTC in CCSDS ASCII Time Code A format.

INPUTS: spacecraftTag-Spacecraft identifier, must be one of: PGSd_TRMM,
PGSd_EOS_AM, PGSd_EOS_PM_GIIS, PGSd_EOS_PM_GIRD,
PGSd_EOS_AURA

 scTime-Array of spacecraft clock times in platform dependent CCSDS
format. UNITS, MAX, and MIN depend on the spacecraft, see the files
containing the specific conversions for more information.

 numValues-number of elements in the input scTime array (and therefore
the output offsets array)

 6-254 333-EMD-001, Rev. 05

OUTPUTS:
Table 6-101. PGS_TD_SCtime_to_UTC Outputs

Name Description Units
asciiUTC UTC time of first s/c clock time in input array (in CCSDS ASCII Time Code A format).

The values of MAX, and MIN depend on the spacecraft, add values from prologs!
ASCII

offsets Array of offsets of each input s/c clock time in input array scTime relative to the first
time in the array. This includes the first time as well (i.e., the first offset will be 0.0).
The values of MAX, and MIN depend on the first time as well the spacecraft. Add
values from prologs!

seconds

RETURNS:
Table 6-102. PGS_TD_SCtime_to_UTC Returns

Return Description
PGS_S_SUCCESS successful execution
PGSTD_W_BAD_SC_TIME one or more input s/c times could not be deciphered
PGSTD_E_BAD_INITIAL_TIME the initial input s/c time (first time in input array) could not be deciphered
PGSTD_E_SC_TAG_UNKNOWN unknown/unsupported spacecraft ID tag
PGS_E_TOOLKIT an unexpected error occurred

EXAMPLES:
C: #define ARRAY_SIZE 1000

 PGSt_scTime scTime[ARRAY_SIZE][8];
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE];
PGSt_SMF_status returnStatus;

 *** Initialize scTime array ***
 :
 :

 returnStatus = PGS_TD_SCtime_to_UTC(PGSd_EOS_AM,scTime,
 ARRAY_SIZE,asciiUTC,
 offsets);
if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

FORTRAN: implicit none

 integer pgs_td_sctime_to_utc
integer array_size
character*8 sctime(array_size)
character*27 asciiutc
double precision offsets(array_size)
integer returnstatus

 6-255 333-EMD-001, Rev. 05

 *** Initialize sctime array ***
 :
 :
returnstatus = pgs_td_sctime_to_utc(pgsd_eos_am,sctime,
 array_size,asciiutc,
 offsets)
if (returnstatus .ne. pgs_s_success) then
 :
*** do some error handling ***
 :
endif

NOTES: WARNING: To properly convert times to or from TRMM s/c clock time
the value of the TRMM Universal Time Correlation Factor (UTCF) must
be known. This value must be supplied by the user in the Process Control
File (PCF). The following line MUST be contained in the PCF for any
process that is converting to or from TRMM s/c clock time:

 10123|TRMM UTCF value|<UTC VALUE>
 Where the proper value of the UTCF should be substituted for

<UTC VALUE>.
 There is no corresponding problem for AM1 clock time, which is

specified to have an accuracy of 100 microseconds.
This function converts an array of input s/c times to an initial time and an
array of offsets relative to this initial time. If the first time in the input
array cannot be deciphered, this function returns an error. If any other time
in the input array cannot be deciphered, the corresponding offset is set to
PGSd_GEO_ERROR_VALUE and this function continues after setting
the return value to a warning.
See Section 6.2.7.2 (ASCII Time Formats)

 The input spacecraft times vary in format. The supported spacecraft times
are in the following formats:

TRMM CUC (platform specific variant of CUC used)
EOS AM CDS (platform specific variant of CDS used)
EOS AURA CUC
EOS PM GIIS CDS
EOS PM GIRD CUC

 UTC: Coordinated Universal Time
TAI: International Atomic Time
CUC: CCSDS Unsegmented Time Code
CDS CCSDS Day Segmented Time Code

REQUIREMENTS: PGSTK-1170

 6-256 333-EMD-001, Rev. 05

Convert CCSDS ASCII Time Format A to Format B

NAME: PGS_TD_ASCIItime_AtoB()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_ASCIItime_AtoB(
 char asciiUTC_A[28],
 char asciiUTC_B[27]);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_asciitime_atob(asciiutc_a,asciiutc_b);
 character*27 asciiutc_a
 character*26 asciiutc_b

DESCRIPTION: This Tool converts UTC time in CCSDS ASCII Time Code A to CCSDS
ASCII Time Code B.

INPUTS:
Table 6-103. PGS_TD_ASCIItime_AtoB Inputs

Name Description Units Min Max
asciiUTC_A UTC Time in CCSDS ASCII Time Code A N/A N/A N/A

OUTPUTS:
Table 6-104. PGS_TD_ASCIItime_AtoB Outputs

Name Description Units Min Max
asciiUTC_B UTC Time in CCSDS ASCII Time Code B N/A N/A N/A

RETURNS:
Table 6-105. PGS_TD_ASCIItime_AtoB Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_TIME_VALUE_ERROR Error in input time value
PGSTD_E_TIME_FMT_ERROR Error in input time format
PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

 6-257 333-EMD-001, Rev. 05

EXAMPLES:

C: PGSt_SMF_status returnValue;
char asciiUTC_A[28];
char asciiUTC_B[27];

 strcpy(asciiUTC_A,”1998-06-30T10:51:28.320000Z”);
returnValue = PGS_TD_ASCIItime_AtoB(asciiUTC_A,asciiUTC_B);
if (returnValue != PGS_S_SUCCESS)
{
** test errors, take appropriate action **
 :
 :
}
printf(“%s\n”,asciiUTC_B);

FORTRAN: implicit none

 integer pgs_td_asciitime_atob
integer returnvalue
character*27 asciiutc_a
character*26 asciiutc_b

 asciiutc_a = ‘1998-06-30T10:51:28.320000’
returnvalue = pgs_td_asciitime_atob(asciiutc_a,asciiutc_b)
if (returnvalue .ne. pgs_s_success) goto 999
write(6,*) asciiutc_b

NOTES: The output of this tool is in CCSDS ASCII Time Code B format.

 See Section 6.2.7.2 (ASCII Time Formats)

REQUIREMENTS: PGSTK-1170, PGSTK-1180, PGSTK-1210

 6-258 333-EMD-001, Rev. 05

Convert CCSDS ASCII Time Format B to Format A

NAME: PGS_TD_ASCIItime_BtoA()

SYNOPSIS:

C:
#include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_ASCIItime_BtoA(
 char asciiUTC_B[27],
 char asciiUTC_A[28]);

FORTRAN:
include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_asciitime_btoa(asciiutc_b,asciiutc_a);
 character*26 asciiutc_b
 character*27 asciiutc_a

DESCRIPTION: This Tool converts UTC time in CCSDS ASCII Time Code B to CCSDS
ASCII Time Code A.

INPUTS:
Table 6-106. PGS_TD_ASCIItime_BtoA Inputs

Name Description Units Min Max
asciiUTC_B UTC Time in CCSDS ASCII Time Code B N/A N/A N/A

OUTPUTS:
Table 6-107. PGS_TD_ASCIItime_BtoA Outputs

Name Description Units Min Max
asciiUTC_A UTC Time in CCSDS ASCII Time Code A N/A N/A N/A

RETURNS:
Table 6-108. PGS_TD_ASCIItime_BtoA Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_TIME_VALUE_ERROR Error in input time value
PGSTD_E_TIME_FMT_ERROR Error in input time format
PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

 6-259 333-EMD-001, Rev. 05

EXAMPLES:

C: PGSt_SMF_status returnValue;
char asciiUTC_B[27];
char asciiUTC_A[28];

 strcpy(asciiUTC_B,”1998-181T10:51:28.320000Z”);
returnValue = PGS_TD_ASCIItime_BtoA(asciiUTC_B,asciiUTC_A);
if (returnValue != PGS_S_SUCCESS)
{
** test errors, take appropriate action **
 :
 :
}
printf(“%s\n”,asciiUTC_A);

FORTRAN: implicit none

 integer pgs_td_asciitime_btoa
integer returnvalue
character*26 asciiutc_b
character*27 asciiutc_a

 asciiutc_b = ‘1998-181T10:51:28.320000’
returnvalue = pgs_td_asciitime_btoa(asciiutc_b,asciiutc_a)
if (returnvalue .ne. pgs_s_success) goto 999
write(6,*) asciiutc_a

NOTES: The output of this tool is in CCSDS ASCII Time Code A format.

 See Section 6.2.7.2 (ASCII Time Formats)

REQUIREMENTS: PGSTK-1170, PGSTK-1180, PGSTK-1210

 6-260 333-EMD-001, Rev. 05

Convert UTC to GPS Time

NAME: PGS_TD_UTCtoGPS()

SYNOPSIS:

C:
#include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoGPS(
 char asciiUTC[28],
 PGSt_double *secGPS);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctogps(asciiUTC,secgps)
 character*27 asciiutc
 double precision secgps

DESCRIPTION: This tool converts from UTC time to GPS time.

INPUTS:
Table 6-109. PGS_TD_UTCtoGPS Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII Time

Code A or B format
time 1961-01-01 T00:00:00 2008-03-30

T23:59:59.999999

OUTPUTS:
Table 6-110. PGS_TD_UTCtoGPS Outputs

Name Description Units Min Max
secGPS Continuous real seconds since 0

hrs UTC on Jan. 6, 1980
seconds -599961636.577182 890956802.999999

RETURNS:
Table 6-111. PGS_TD_UTCtoGPS Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction available input time
PGSTD_E_TIME_FMT_ERROR Error in format of ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of the ASCII UTC time
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

 6-261 333-EMD-001, Rev. 05

EXAMPLES:

C: char asciiUTC[28];
PGSt_double secGPS;
PGSt_SMF_status returnStatus;
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus = PGS_TD_UTCtoGPS(asciiUTC,&secGPS);
if(returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus, err, msg);
 printf(“\n ERROR: %s”, msg);
}

FORTRAN: implicit none

 integer pgs_td_utctogps
character*27 asciiutc
double precision secgps
integer returnstatus
integer anerror
character*35 errname
character*150 errmsg

 returnstatus = pgs_td_utctogps(asciiutc,secgps)
if(returnstatus .ne. PGS_S_SUCCESS) then
 returnstatus = pgs_smf_getmsg(anerror,errorname,errmsg)
 write(*,*) errname,errmsg
endif

NOTES: See Section 6.2.3.2 (ASCII Time Formats)

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 GPS: Global Positioning System
TAI: International Atomic Time
UTC: Coordinated Universal Time

REQUIREMENTS: PGSTK-1170, PGSTK-1210

 6-262 333-EMD-001, Rev. 05

Convert GPS to UTC Time

NAME: PGS_TD_GPStoUTC()

SYNOPSIS:

C:
#include <PGS_TD.h>

 PGSt_SMF_Status
PGS_TD_GPStoUTC(
 PGSt_double secGPS,
 char asciiUTC[28]);

FORTRAN:
include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_gpstoutc(secgps, asciiutc)
 double precision secgps
 character*27 asciiutc

DESCRIPTION: This tool converts from GPS time to UTC time.

INPUTS:
Table 6-112. PGS_TD_GPStoUTC Inputs

Name Description Units Min Max
secGPS Continuous real seconds since 0 hrs

UTC on Jan. 6, 1980
seconds -599961636.577182 see NOTES

OUTPUTS:
Table 6-113. PGS_TD_GPStoUTC Outputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII Time Code A time 1961-01-01 see NOTES

RETURNS:
Table 6-114. PGS_TD_GPStoUTC Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction for input time
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

 6-263 333-EMD-001, Rev. 05

EXAMPLES:

C: char asciiUTC[28];
PGSt_double secGPS;
PGSt_SMF_status returnStatus;
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus = PGS_TD_GPStoUTC(secGPS,asciiUTC);
if(returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus, err, msg);
 printf(“\n ERROR: %s”, msg);
}

FORTRAN: implicit none

 integer pgs_td_gpstoutc
character*27 asciiutc
double precision secgps
integer returnstatus
integer anerror
character*35 errname
character*150 errmsg

 returnstatus = pgs_td_gpstoutc(secgps,asciiUTC)
if(returnstatus .ne. PGS_S_SUCCESS) then
 returnstatus = pgs_smf_getmsg(anerror,errorname,errmsg)
 write(*,*) errname,errmsg
endif

NOTES: See Section 6.2.3.2 (ASCII Time Formats)

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 GPS: Global Positioning System
TAI: International Atomic Time
UTC: Coordinated Universal Time

REQUIREMENTS: PGSTK-1170, PGSTK-1210

 6-264 333-EMD-001, Rev. 05

Convert UTC Time to TDT Time

NAME: PGS_TD_UTCtoTDTjed()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoTDTjed(
 char asciiUTC[28],
 PGSt_double jedTDT[2]);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctotdtjed(asciiutc, jedtdt)
 character*27 asciiutc
 double precision jedtdt(2)

DESCRIPTION: This tool converts UTC in CCSDS ASCII time format A or B to TDT as a
Julian date (TDT = Terrestrial Dynamical Time)

INPUTS:
Table 6-115. PGS_TD_UTCtoTDTjed Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII time Code A or B format time 1961-01-01 see NOTES

OUTPUTS:

Table 6-116. PGS_TD_UTCtoTDTjed Outputs
Name Description Units Min Max

jedTDT TDT as a Julian date days see NOTES see NOTES

RETURNS:
Table 6-117. PGS_TD_UTCtoTDTjed Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGSTD_E_NO_LEAP_SECS Leap second errors
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

 6-265 333-EMD-001, Rev. 05

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char asciiUTC[28] =
 “2002-06-30T11:04:57.987654Z”;
PGSt_double jedTDT[2];
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoTDTjed(asciiUTC,jedTDT);
if (returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf(“\nERROR: %s”,msg)
 }

FORTRAN: implicit none

 integer pgs_td_utctotdtjed
integer returnstatus
character*27 asciiutc
double precision jedtdt(2)
character*33 err
character*241 msg

 asciiutc = ‘1998-06-30T10:51:28.320000Z’
returnstatus = pgs_td_utctotdtjed(asciiutc,jedtdt)
if (returnstatus .ne. pgs_s_success)
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 TDT is: Terrestrial Dynamical Time
UTC is: Coordinated Universal Time

Prior to 1984, there is no distinction between TDT and TDB; either one is
denoted “ephemeris time” (ET). Also, the values before 1972 are based on
U.S. Naval Observatory estimates, which are the same as adopted by the
JPL Ephemeris group that produces the DE series of solar system
ephemerides, such as DE200.

Section 6.2.7.4 (Toolkit Julian Dates)

See Section 6.2.7.2 (ASCII Time Formats)

See See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 6-266 333-EMD-001, Rev. 05

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-267 333-EMD-001, Rev. 05

Convert UTC Time to TDB Time

NAME: PGS_TD_UTCtoTDBjed()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoTDBjed(
 char asciiUTC[28],
 PGSt_double jedTDB[2]);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctotdbjed(asciiutc, jedtdb)
 character*27 asciiutc
 double precision jedtdb(2)

DESCRIPTION: This tool converts UTC in CCSDS ASCII time format A or B to TDB as a
Julian date (TDB = Barycentric Dynamical Time)

INPUTS:
Table 6-118. PGS_TD_UTCtoTDBjed Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII time Code A or B format time 1961-01-01 see NOTES

OUTPUTS:
Table 6-119. PGS_TD_UTCtoTDBjed Outputs

Name Description Units Min Max
jedTDB TDB as a Julian date days see NOTES see NOTES

RETURNS:
Table 6-120. PGS_TD_UTCtoTDBjed Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGSTD_E_NO_LEAP_SECS Leap second errors
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

 6-268 333-EMD-001, Rev. 05

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char asciiUTC[28] =
 “2002-02-23T11:04:57.987654Z”;
PGSt_double jedTDB[2];
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoTDBjed(asciiUTC,jedTDB);
if (returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf(“\nERROR: %s”,msg)
 }

FORTRAN: implicit none

 integer pgs_td_utctotdbjed
integer returnstatus
character*27 asciiutc
double precision jedtdb(2)
character*33 err
character*241 msg

 asciiutc = ‘1998-06-30T10:51:28.320000Z’
returnstatus = pgs_td_utctotdbjed(asciiutc,jedtdb)
if (returnstatus .ne. pgs_td_utctotdbjed(asciiutc,jedtdb)
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 TDB is: Barycentric Dynamical Time
UTC is: Coordinated Universal Time

 Prior to 1984, there is no distinction between TDT and TDB; either one is
denoted “ephemeris time” (ET). Also, the values before 1972 are based on
U.S. Naval Observatory estimates, which are the same as adopted by the
JPL Ephemeris group that produces the DE series of solar system
ephemerides, such as DE200.

 See Section 6.2.7.2 (ASCII Time Formats)

 See Section 6.2.7.4 (Toolkit Julian Dates)

See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 6-269 333-EMD-001, Rev. 05

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-270 333-EMD-001, Rev. 05

Compute Elapsed TAI Time

NAME: PGS_TD_TimeInterval()

SYNOPSIS:

C: #include <PGS_TD.h>

 pgs_status
PGS_TD_TimeInterval(
 PGSt_double startTAI,
 PGSt_double stopTAI,
 PGSt_double *interval)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_timeinterval(starttai, stoptai, interval)
 double precision starttai
 double precision stoptai
 double precision interval

DESCRIPTION: This function computes the elapsed TAI time in seconds between any two
time intervals

INPUTS:
Table 6-121. PGS_TD_TimeInterval Inputs

Name Description Units Min Max
startTAI start time in TAI seconds none none
stopTAI stop time in TAI seconds none none

OUTPUTS:
Table 6-122. PGS_TD_TimeInterval Outputs

Name Description Units Min Max
interval Elapsed time interval seconds none none

RETURNS:
Table 6-123. PGS_TD_TimeInterval Returns

Return Description
PGS_S_SUCCESS Successful return

 6-271 333-EMD-001, Rev. 05

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double startTAI;
PGSt_double stopTAI;
PGSt_double interval;

 startTAI = 34523.5;
stopTAI = 67543.2;
returnStatus = PGS_TD_TimeInterval(startTAI,stopTAI,
 &interval);

FORTRAN: implicit none

 integer pgs_td_timeinterval
integer returnstatus
double precision starttai
double precision stoptai
double precision interval

 returnstatus = pgs_td_timeinterval(starttai,stoptai,
 interval)

NOTES: This interval is the same as elapsed internal time and is the true interval in
System International (SI) seconds.

REQUIREMENTS: PGSTK-1190

 6-272 333-EMD-001, Rev. 05

Convert UTC in CCSDS ASCII Format to Julian Date Format

NAME: PGS_TD_UTCtoUTCjd()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoUTCjd(
 char asciiUTC[28],
 PGSt_double jdUTC[2])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctoutcjd(asciiutc, jdutc)
character*27 asciiutc
double precision jdutc(2)

DESCRIPTION: Converts ASCII UTC times to UTC Julian Dates

INPUTS:
Table 6-124. PGS_TD_UTCtoUTCjd Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS

ASCII time Code A or B
format

time 1961-01-01 see NOTES

OUTPUTS:
Table 6-125. PGS_TD_UTCtoUTCjd Outputs

Name Description Units Min Max
jdUTC[2] UTC Julian date days none none

RETURNS:
Table 6-126. PGS_TD_UTCtoUTCjd Returns

Return Description
PGS_S_SUCCESS successful return
PGSTD_M_LEAP_SEC_IGNORED leap second portion of input time discarded
PGSTD_E_TIME_FMT_ERROR error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR error in format of input ASCII UTC time
PGS_E_TOOLKIT something unexpected happened, execution aborted

 6-273 333-EMD-001, Rev. 05

NOTES: Caution should be used because UTC Julian Date jumps backwards each
time a leap second is introduced. Therefore, in a leap second interval the
output times will repeat those in the previous second (provided that the
UTC ASCII seconds field ran from 60.0 to 60.9999999 etc. as it should
during that one second). Therefore, the only known uses for this function
are:
(a) to get UT1, (after conversion to modified Julian Date by subtracting
2400000.5) by accessing an appropriate table of differences
(b) to determine the correct Julian Day at which to access any table based
on UTC and listed in Julian date, such as leap seconds, UT1, and polar
motion tables.

UTC is: Coordinated Universal Time

See section 6.2.7.4 (Toolkit Julian Dates)

REQUIREMENTS: PGSTK - 1170, 1220

 6-274 333-EMD-001, Rev. 05

Convert UTC Julian Date to CCSDS ASCII Time Code A Format

NAME: PGS_TD_UTCjdtoUTC()

SYNOPSIS:
C: #include <PGS_TD.h>

 PGSt_SMF_status
 PGS_TD_UTCjdtoUTC(

 PGSt_double jdUTC[2],
 PGSt_boolean onLeap,
 char asciiUTC[28])

FORTRAN: include ‘PGS_SMF.f’
 include ‘PGS_TD_3.f’

 integer function pgs_td_utcjdtoutc(jdutc,onleap,asciiutc)

double precision jdutc(2)
integer onleap
character*27 asciiutc

DESCRIPTION: This tool converts UTC as a Julian date to UTC in CCSDS ASCII Time
Code A format.

INPUTS:
Table 6-127. PGS_TD_UTCjdtoUTC Inputs

Name Description Units
 jdUTC UTC time as a Julian date days
onLeap Indicates if input time is occurring during a leap second T/F

OUTPUTS:
Table 6-128. PGS_TD_UTCjdtoUTC Outputs

Name Description Units
 asciiUTC UTC time in CCSDS ASCII Time Code A format time

RETURNS:
Table 6-129. PGS_TD_UTCjdtoUTC Returns

 Return Description
PGS_S_SUCCESS successful return
PGSTD_E_TIME_FMT_ERROR a leap second was indicated at an inappropriate time
 PGS_E_TOOLKIT something unexpected happened

 6-275 333-EMD-001, Rev. 05

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 PGSt_double jdUTC[2]={2449534.5,0.5};

 char asciiUTC[28];

returnStatus = PGS_TD_UTCjdtoUTC(jdUTC,PGS_FALSE,asciiUTC);

 if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

/* asciiUTC now contains the value:
 “1994-07-01T12:00:00.000000Z” */

printf(“UTC: %s\n”,asciiUTC);

FORTRAN: integer pgs_td_utcjdtoutc

 integer returnstatus

double precision jdutc(2)

character*27 asciiutc

jdutc(1) = 2449534.5D0

jdutc(1) = 0.5D0

returnstatus = pgs_td_utcjdtoutc(jdutc,pgs_false,asciiutc)

if (returnstatus .ne. pgs_s_success) goto 999

! asciiutc now contains the value:
! ‘1994-07-01T12:00:00.000000Z’

write(6,*) ‘UTC: ‘, asciiutc

NOTES: UTC is: Coordinated Universal Time

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems)

Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac

See section 6.2.7.4 (Toolkit Julian Dates)

REQUIREMENTS: PGSTK - 1210, 1220, 1160, 1170

 6-276 333-EMD-001, Rev. 05

Convert UTC to UT1

NAME: PGS_TD_UTCtoUT1()

SYNOPSIS:

C: #include <PGS_CSC.h>
#include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoUT1(
 char asciiUTC[28],
 PGSt_double *secUT1);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’
include ‘PGS_CSC_4.f’

 integer function pgs_td_utctout1(asciiutc, secut1)
 character*27 asciiutc
 double precision secut1

DESCRIPTION: This tool converts a time from CCSDS ASCII Time (Format A or B) to
UT1

INPUTS:
Table 6-130. PGS_TD_UTCtoUT1 Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII

Time Code A or B format
time 1971-01-01T00:00:00 also see notes Date

OUTPUTS:
Table 6-131. PGS_TD_UTCtoUT1 Outputs

Name Description Units Min Max
secUT1 UT1 in seconds from midnight sec 0.0 86400.999999

RETURNS: PGS_S_SUCCESS
PGSTD_E_TIME_FMT_ERROR
PGSTD_E_TIME_VALUE_ERROR
PGSCSC_W_PREDICTED_UT1
PGSTD_E_NO_UT1_VALUE
PGS_E_TOOLKIT

 6-277 333-EMD-001, Rev. 05

EXAMPLES:

C: PGSt_SMF_status returnStatus
char asciiUTC[28] = “2002-07-27T11:04:57.987654Z
PGSt_double secUT1
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoUT1(asciiUTC,&secUT1);
if (returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf(“\nERROR: %s”,msg)
}

FORTRAN: implicit none

 integer pgs_td_utctout1
integer returnstatus
character*27 asciiutc
double precision secut1
character*33 err
character*241 msg

 asciiutc = ‘2002-07-27T11:04:57.987654Z’
returnstatus = pgs_td_utctout1(asciiutc,secut1)
if (returnstatus .ne. pgs_s_success) then
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: Although UT1 was used for civil timekeeping before Jan. 1, 1972, today
UT1 is a measure of Earth rotation only; it is a measure of the angle of the
Greenwich Meridian from the equinox of date such that 24 hours of
System International (SI) seconds (86400 seconds) of TAI or TDT
constitute one full revolution. As such, it can be directly reduced to
Greenwich Apparent Sidereal Time (GAST). This function should be used
with caution near midnight. For example, if UTC is 0.5 seconds before
midnight, and UT1 - UTC = 0.6 s, then this function returns 0.1 s, but the
day has changed.

 Prior to Jan. 1, 1972, either UT1 or, for a brief period, a variant called
UT2 that accounts for some of the periodic nonuniformities of Earth
rotation, were used for time keeping.

 6-278 333-EMD-001, Rev. 05

TIME ACRONYMS:

 UT1 is: Universal Time
UTC is: Coordinated Universal Time

See Section 6.2.7.2 (ASCII Time Formats)

See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems), Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-279 333-EMD-001, Rev. 05

Convert UTC to UT1 Julian Date

NAME: PGS_TD_UTCtoUT1jd()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoUT1jd(
 char asciiUTC[28],
 PGSt_double jdUT1[2])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_CSC_4.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctout1jd(asciiutc, jdut1)
 character*27 asciiutc
 double precision jdut1(2)

DESCRIPTION: This tool converts a time from CCSDS ASCII Time (Format A or B) to
UT1 Julian date.

INPUTS:
Table 6-132. PGS_TD_UTCtoUT1jd Inputs

Name Description Units Min

asciiUTC UTC time in CCSDS ASCII Time Code A format or ASCII Time Code B format ASCII 1961-01-01

OUTPUTS:
Table 6-133. PGS_TD_UTCtoUT1jd Outputs

Name Description Units

jdUT1 UT1 Julian date as two real numbers, the first a half integer number of days and the second the
fraction of a day between this half integer number of days and the next half integer day number.

days

RETURNS:
Table 6-134. PGS_TD_UTCtoUT1jd Returns

Return Description

PGS_S_SUCCESS Successful execution
PGSTD_M_LEAP_SEC_IGNORED Leap second portion of input time discarded
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGS_E_TOOLKIT Something unexpected happened, execution aborted

EXAMPLES: None

 6-280 333-EMD-001, Rev. 05

NOTES: Although UT1 was used for civil timekeeping before Jan. 1, 1972, today
UT1 is a measure of Earth rotation only; it is a measure of the angle of the
Greenwich Meridian from the equinox of date such that 24 hours of
System International (SI) seconds (86400 seconds) of TAI or TDT
constitute one full revolution. As such, it can be directly reduced to
Greenwich Apparent Sidereal Time (GAST).

 Prior to Jan. 1, 1972, either UT1 or, for a brief period, a variant called
UT2 that accounts for some of the periodic nonuniformities of Earth
rotation, were used for time keeping.

 TIME ACRONYMS:

 UT1 is: Universal Time
UTC is: Coordinated Universal Time

See Section 6.2.7.2 (ASCII Time Formats)

See Section 6.2.7.4 (Toolkit Julian Dates)

See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK-1170, PGSTK-1210

 6-281 333-EMD-001, Rev. 05

Get Leap Second

NAME: PGS_TD_LeapSec()

SYNOPSIS:
C: #include <PGS_TD.h>

PGSt_SMF_status
PGS_TD_LeapSec(

PGSt_double jdUTC[2],
PGSt_double *leapSec,
PGSt_double *lastChangeJD,
PGSt_double *nextChangeJD,
char *leapStatus)

FORTRAN include ‘PGS_SMF.f’
 include ‘PGS_TD_3.f’

integer funtion pgs_td_leapsec(jdutc,leapsec,lastchangejd,nextchangejd,
leapstatus

 double precision jdutc(2)
double precision leapsec
double precision lastchangejd
double precision nextchangejd
character*10 leapstatus

DESCRIPTION: This tool accesses the file ‘leapsec.dat’, extracts the leap second value for
an input Julian Day number, and returns an error status.

INPUTS:
Table 6-135. Get Leap Second Inputs

Name Description Units Min Max
jdUTC UTC Julian Day number days (see NOTES) N/A N/A

OUTPUTS:
Table 6-136. Get Leap Second Outputs

Name Description Units Min Max

leapSec leap second value for day
jdUTC, read from table

seconds 0 N/A

lastChangeJD Julian Day number upon which that leap second value was effective days (see NOTES) N/A N/A
nextChangeJD Julian Day number of the next ACTUALor PREDICTED leap second days (see NOTES) N/A N/A
leapStatus indicates whether the leap second value is ACTUAL, PREDICTED,

a LINEARFIT, or ZEROLEAPS (leap second value is set to zero if
the input time is before the start of the table)

 N/A N/A N/A

 6-282 333-EMD-001, Rev. 05

RETURNS:
Table 6-137. Get Leap Seconds Returns

Return Description
PGS_S_SUCCESS successful execution
PGSTD_W_JD_OUT_OF_RANGE invalid input Julian Day number
PGSTD_W_DATA_FILE_MISSING leap second file not found

EXAMPLES:
 PGSt_double jdUTC[2];

PGSt_double leapsecond;

PGSt_double lastChangeJD;

PGSt_double nextChangeJD;

PGSt_SMF_status returnStatus;

char leapStatus[10];

jdUTC[0] = 2439999.5;

jdUTC[1] = 0.5;

returnStatus = PGS_TD_LeapSec(jdUTC,&leapsecond,
 &lastChangeJD,
 &nextChangeJD,leapStatus);

if (returnStatus != PGS_S_SUCCESS)

{

/* handle errors */

}

NOTES:

With Toolkit 5.2, the functions that call PGS_TD_LeapSec() will return an error
and write a diagnostic message to the Log Status File indicating that an
obsoleteformat was encountered in the Leap Seconds file, if they encounter the
“PREDICTED” status. “PREDICTED” is no longer supported.

UTC: Coordinated Universal Time

 TAI: International Atomic Time

REQUIREMENTS: PGSTK - 1050, 0930

 6-283 333-EMD-001, Rev. 05

6.2.7.8 TD Functions

PGS_TD_ADEOSIItoTAI

This tool converts ADEOS-II s/c clock time (instrument time + pulse time) to TAI (prototype
code).

PGS_TD_ADEOSIItoUTC

This tool converts converts ADEOS-II s/c clock time (instrument time + pulse time) to a UTC
string in CCSDS ASCII Time Code A format (prototype code).

PGS_TD_ASCIItime_AtoB

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_ASCIItime_BtoA

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_EOSAMtoTAI

This function converts EOS AM spacecraft clock time in CCSDS day segmented Time Code
(CDS) (with implicit P-field) format to TAI (as real continuous seconds since 12AM UTC 1-1-
1993).

PGS_TD_EOSAMtoUTC

This function converts EOS AM spacecraft clock time in platform-dependent format to UTC in
CCSDS ASCII time code A format.

PGS_TD_EOSAURAGIIStoTAI

This function converts EOS AURA spacecraft GIIS clock time in CCSDS day segmented Time
Code (CDS) (with implicit P-field format) to TAI (as real continuous seconds since 12 AM UTC
1-1-1993).

PGS_TD_EOSAURAGIRDtoTAI

This function converts EOS AURA spacecraft GIRD clock time in CCSDS Unsegmented Time
Code (CUC) (with explicit P-field) format to TAI (as real continuous seconds since 12AM UTC
1-1-1993).

PGS_TD_EOSAURAtoUTC

This function converts EOS AURA spacecraft GIRD clock time in CCSDS unsegmented Time
Code (CUC) (with explicit P-field) format to UTC in CCSDS ASCII time code A format.

 6-284 333-EMD-001, Rev. 05

PGS_TD_EOSPMGIIStoTAI

This function converts EOS PM spacecraft GIIS clock time in CCSDS day segmented Time
Code (CDS) (with implicit P-field format) to TAI (as real continuous seconds since 12 AM UTC
1-1-1993).

PGS_TD_EOSPMGIIStoUTC

This function converts EOS PM spacecraft GIIS clock time in platform-dependent format to
UTC in CCSDS ASCII time code A format.

PGS_TD_EOSPMGIRDtoTAI

This function converts EOS PM spacecraft GIRD clock time in CCSDS Unsegmented Time
Code (CUC) (with explicit P-field) format to TAI (as real continuous seconds since 12AM UTC
1-1-1993).

PGS_TD_EOSPMGIRDtoUTC

This function converts EOS PM spacecraft GIRD clock time in CCSDS unsegmented Time Code
(CUC) (with explicit P-field) format to UTC in CCSDS ASCII time code A format.

PGS_TD_FGDCtoUTC

This function converts an FGDC ASCII date string and time string to CCSDS ASCII Time Code
(format A). The input FGDC time string may be in “Universal Time” or “local time” format.

PGS_TD_GPStoUTC

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_ISOinttoTAI

This function converts an integer number that represents an ISO time (YYMMDDhh) to TAI.

PGS_TD_ISOinttoUTCjd

This function converts an integer number that represents an ISO time (YYMMDDhh) to a UTC
time in toolkit Julian date format.

PGS_TD_JDtoMJD

This function converts a Julian date to a modified Julian date.

PGS_TD_JDtoTJD

This function converts a Julian date to a truncated Julian date.

PGS_TD_JulianDateSplit

This function converts a Julian date to Toolkit Julian date format

 6-285 333-EMD-001, Rev. 05

PGS_TD_LeapSec

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_MJDtoJD

This function converts a modified Julian date to a Julian date.

PGS_TD_PB5CtoUTCjd

This function converts a time in PB5C time format to TAI (Toolkit internal time).

PGS_TD_PB5toTAI

This function converts a time in PB5 time format to TAI (Toolkit internal time).

PGS_TD_PB5toUTCjd

This function converts a time in PB5 time format to UTC time in toolkit Julian date format.

PGS_TD_SCtime_to_UTC

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAIjdtoTAI

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAIjdtoTDTjed

This function converts TAI Julian date to TDT Julian ephemeris date.

PGS_TD_TAIjdtoUTCjd

This function converts TAI Julian date to UTC Julian date.

PGS_TD_TAItoGAST

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAItoISOint

This function converts TAI to an integer number that represents an ISO time (YYMMDDhh).

PGS_TD_TAItoTAIjd

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAItoUDTF

This tool converts TAI to a UDTF integer array.

PGS_TD_TAItoUT1jd

This tool converts continuous seconds since 12AM UTC 1-1-93 to UT1 time as a Julian date.

 6-286 333-EMD-001, Rev. 05

PGS_TD_TAItoUT1pole

This tool converts continuous seconds since 12AM UTC 1-1-93 to UT1 time as a Julian date and
returns x and y polar wander values and UT1-UTC as well.

PGS_TD_TAItoUTC

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAItoUTCjd

This tool converts continuous seconds since 12AM UTC 1-1-93 to UTC time as a Julian date.

PGS_TD_TDBjedtoTDTjed

This function converts TDB (Barycentric Dynamical Time) as a Julian ephemeris date to TDT
(Terrestrial Dynamical Time) as a Julian ephemeris date.

PGS_TD_TDTjedtoTAIjd

This function converts TDT Julian ephemeris date to TAI Julian date.

PGS_TD_TDTjedtoTDBjed

This function converts TDT (Terrestrial Dynamical Time) as a Julian ephemeris date to TDB
(Barycentric Dynamical Time) as a Julian ephemeris date.

PGS_TD_TJDtoJD

This function converts a truncated Julian date to a Julian date.

PGS_TD_TRMMtoTAI

This function converts TRMM spacecraft clock time in CCSDS Unsegmented Time Code (CUC)
(with implicit P-field) format to TAI (Toolkit internal time).

PGS_TD_TRMMtoUTC

This function converts TRMM spacecraft clock time in CCSDS unsegmented Time Code (CUC)
(with implicit P-field) format to UTC in CCSDS ASCII time code A format.

PGS_TD_TimeInterval

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UDTFtoTAI

This function converts a UDTF integer array to TAI.

PGS_TD_UDTFtoUTCjd

This function converts a UDTF integer array to a UTC Julian date.

 6-287 333-EMD-001, Rev. 05

PGS_TD_UT1jdtoUTCjd

This tool converts UT1 time as a Julian date to UTC time as a Julian date.

PGS_TD_UTC_to_SCtime

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCjdtoISOint

This function converts a UTC time in toolkit Julian date format to an integer number that
represents an ISO time (YYMMDDhh).

PGS_TD_UTCjdtoPB5

This function converts a UTC time in toolkit Julian date format to PB5 time format.

PGS_TD_UTCjdtoPB5C

This function converts a UTC time in toolkit Julian date format to PB5C time format.

PGS_TD_UTCjdtoTAIjd

This tool converts UTC as a Julian date to TAI as a Julian date.

PGS_TD_UTCjdtoUT1jd

This tool converts UTC time as a Julian date to UT1 time as a Julian date.

PGS_TD_UTCjdtoUTC()

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoADEOSII

This function converts UTC in CCSDS ASCII time code A (or B) format to ADEOS s/c clock
format (this is a prototype only).

PGS_TD_UTCtoEOSAM

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS AM spacecraft
(s/c) clock time in CCSDS Day Segmented (CDS) Time Code (with implicit P-field) format.

PGS_TD_UTCtoEOSAURAGIIS

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS AURA
spacecraft GIIS (s/c) clock time in CCSDS Day Segmented (CDS) time code (with implicit P-
field) format.

PGS_TD_UTCtoEOSAURAGIRD

This function converts UTC in CCSDS ASCII Time Code A or CCSDS ASCII Time Code B
format to EOS AURA spacecraft GIRD clock time in CCSDS Unsegmented Time Code (CUC)
(with explicit P-field) format.

 6-288 333-EMD-001, Rev. 05

PGS_TD_UTCtoEOSPMGIIS

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS PM spacecraft
GIIS (s/c) clock time in CCSDS Day Segmented (CDS) time code (with implicit P-field) format.

PGS_TD_UTCtoEOSPMGIRD

This function converts UTC in CCSDS ASCII Time Code A or CCSDS ASCII Time Code B
format to EOS PM spacecraft GIRD clock time in CCSDS Unsegmented Time Code (CUC)
(with explicit P-field) format.

PGS_TD_UTCtoFGDC

This function converts UTC Time in CCSDS ASCII Time Code (format A or B) to the
equivalent FGDC ASCII date string and time string. The time string will be in “Universal Time”
or “local time” format depending on the value of the input variable tdf.

PGS_TD_UTCtoGPS

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTAI

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTAIjd

This tool converts UTC in CCSDS ASCII time format A or B to TAI as a Julian date.

PGS_TD_UTCtoTDBjed

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTDTjed

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTRMM()

This function converts UTC in CCSDS ASCII time code A (or B) format to TRMM spacecraft
(s/c) clock time in CCSDS Unsegmented Time Code (CUC) (with implicit P-field) format.

PGS_TD_UTCtoUT1

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoUT1jd

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoUTCjd

See description in 6.2.7.7 Time and Date Conversion Tools.

 6-289 333-EMD-001, Rev. 05

PGS_TD_calday

This function converts Julian day to calendar day (year, month, day).

PGS_TD_gast

This function converts GMST, nutation in longitude and TDB Julian date to Greenwich
Apparent Sidereal Time expressed as the hour angle of the true vernal equinox of date at the
Greenwich meridian (in radians).

PGS_TD_gmst

The function converts UT1 expressed as a Julian day to Greenwich Mean Sidereal Time, i.e. the
hour angle of the vernal equinox at the Greenwich meridian (in radians).

PGS_TD_julday

This function converts calendar day (year, month, dat) to Julian day.

PGS_TD_sortArrayIndices

This function sorts an array of PGSt_double (double precision) numbers in ascending order.

PGS_TD_timeCheck

This function accepts a character array (string) as an input and returns a value indicating if the
string is in a valid CCSDS ASCII format.

 6-290 333-EMD-001, Rev. 05

	6. SDP Toolkit Specification
	6.1 Introduction
	6.2 SDP Toolkit Tools Mandatory
	6.2.1 File I/O Tools
	6.2.1.1 Level 0 Science Data Access Tools
	6.2.1.1.1 Introduction
	6.2.1.1.2 Design Overview
	6.2.1.1.3 Tools for Reading Production L0 Data
	6.2.1.1.4 Tools for Generating Simple Simulated L0 Data Sets
	6.2.1.1.5 Use of L0 Read Tools In Science Software Processing
	6.2.1.1.6 Special Note on Processing TRMM and ADEOS-II Files

	6.2.1.2 HDF File I/O Tools
	6.2.1.3 Generic File I/O Tools
	 6.2.1.4 Metadata Tools

	
	
	
	
	
	6.2.1.5 Data Quality Assurance
	6.2.1.6 Temporary and Intermediate Files
	 6.2.2 Error/Status Reporting (SMF Tools)
	6.2.2.1 Log File Output Control
	6.2.2.1.1 Logging Control
	6.2.2.1.2 Trace Control
	6.2.2.1.3 Process ID Logging
	6.2.2.1.4 Status Level Control
	6.2.2.1.5 Status Message Seed Control
	6.2.2.1.6 Individual Status Code Control
	6.2.2.1.7 Generating Runtime E-Mail Messages

	 6.2.2.2 Status Reporting Tools
	INPUTS:

	 6.2.2.3 Error and Status Message File Creation Tool

	 6.2.3 Process Control Tools
	 6.2.3.1 Process Control Command Tools
	 6.2.3.2 Process Control API Tools

	 6.2.4 Shared Memory Management Tools
	INPUTS:

	 6.2.5 Bit Manipulation Tools
	6.2.6 Spacecraft Ephemeris and Attitude Data Access Tools
	6.2.6.1 Orbit and Attitude Simulator
	6.2.6.1.1 Brief Description
	6.2.6.1.2 The SCF Environment
	 6.2.6.1.3 Running the Orbit/Attitude Simulator
	6.2.6.1.4 Spacecraft Ephemeris and Attitude File Formats
	6.2.6.1.5 Tools that Require Spacecraft Ephemeris Files
	6.2.6.1.6 Warning

	6.2.6.2 Ephemeris File Checker
	6.2.6.2.1 Brief Description
	6.2.6.2.2 Running the Ephemeris File Checker

	6.2.6.3 Spacecraft Tags Definition File
	 6.2.6.3 EPH Functions

	6.2.7 Time and Date Conversion Tools
	6.2.7.1 Time Acronyms
	6.2.7.2 ASCII Time Formats
	6.2.7.3 Toolkit Internal Time (TAI)
	6.2.7.4 Toolkit Julian Dates
	6.2.7.4.1 Format
	6.2.7.4.2 Meaning
	6.2.7.4.3 Examples

	6.2.7.5 Time Boundaries
	6.2.7.5.1 TAI-UTC Boundaries
	6.2.7.5.2 UT1-UTC Boundaries

	6.2.7.6 Updating the Leap Seconds File
	6.2.7.7 Time and Date Conversion Tools
	SYNOPSIS:
	INPUTS:
	EXAMPLES:
	INPUTS:

	6.2.7.8 TD Functions

